...
首页> 外文期刊>Atmospheric chemistry and physics >Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades
【24h】

Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades

机译:区分过去3年中陆地碳通量和植物挥发物排放趋势的驱动因素

获取原文
获取原文并翻译 | 示例
           

摘要

The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven by hourly meteorology from WFDEI (WATCH forcing data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg Ca-2 in gross primary productivity (GPP) and 185 Tg Ca-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30 degrees N, increasing temperatures induce a substantial extension of 0.22 day a(-1) for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of leaf area index at peak season accounts for similar to 25% of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg Ca-2 globally because of simultaneous increases in soil respiration. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg Ca-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg Ca-2 in isoprene and 0.04 Tg Ca-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use change shows limited impacts on global carbon fluxes and BVOC emissions, but there are regional contrasting impacts over Europe (afforestation) and China (deforestation).
机译:近几十年来,陆地生物圈发生了巨大变化。土地碳通量历史趋势的估计值仍然不确定,因为长期观测在全球范围内是有限的。在这里,我们使用耶鲁互动地球生物圈(YIB)模型来估算土地碳通量和生物挥发性有机化合物(BVOC)排放的年代际趋势,并确定1982-2011年这些变化的主要驱动力。该模型受WFDEI每小时的气象学(应用于ERA-Interim数据的WATCH强迫数据方法)的驱动,模拟了总初级生产力(GPP)297 Tg Ca-2和净初级生产力(185 Tg Ca-2)的增长趋势( NPP)。 CO2施肥是森林生态系统通量变化的主要驱动力,而气象学则主导着草原和灌木丛的变化。变暖增加了夏季高纬度地区的GPP和NPP,而干旱则抑制了热带地区的碳吸收。在北纬30度以北,温度升高导致整个生长季节a(-1)延长0.22天。但是,仅此物候变化不会促进区域碳吸收和BVOC排放。然而,高峰季节的叶面积指数增加约占北部地区GPP和异戊二烯排放量趋势的25%。由于土壤呼吸的同时增加,净陆地汇在全球范围内仅显示3 Tg Ca-2的增加,在统计上微不足道。全球BVOC排放量使用两种方案进行计算。利用光合作用相关方案,该模型预测异戊二烯排放量增加0.4 Tg Ca-2,这主要归因于变暖趋势,因为CO2施肥和抑制作用相互抵消。使用MEGAN(自然界中的气体和气溶胶排放模型)方案,YIBs模型模拟响应于CO2抑制效应,全球异戊二烯中1.1 Tg Ca-2的减少和单萜排放中0.04 Tg Ca-2的减少。土地利用变化对全球碳通量和BVOC排放的影响有限,但对欧洲(植树造林)和中国(森林采伐)的影响却存在区域差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号