首页> 外文期刊>International Journal of Quantum Chemistry >Modeling Quantum Dynamics of Photodetachment from Closed-Shell Anions: Static versus Fluctuating Well-Depth Models
【24h】

Modeling Quantum Dynamics of Photodetachment from Closed-Shell Anions: Static versus Fluctuating Well-Depth Models

机译:从闭壳阴离子中进行光解离的量子动力学建模:静态与波动深度模型

获取原文
获取原文并翻译 | 示例
           

摘要

The electronic states of halide ions are modeled by a one-dimensional Hamiltonian with a potential V(x) = -V_0e~(-#sigma#x~2).The two parameters V_0 and #sigma# are fixed by requiring V(x) to reproduce the experimentally observed ground-state ionization potentials of the halide ions concerned. The potentials so generated are shown to support only one bound state in each case. The time-dependent Fourier grid Hamiltonian method is used to follow the ionization dynamics in monochromatic light of fairly high intensities. The total Hamiltonian, In the most general case, reads H(t) = P_x~2/2m - V_0e~(-#sigma#x~2) - #epsilon#_0s(t)ex sin(#omega#t). For pulsed fields [s(t) = sin~2(#pi#t/t_p)], the computed ionization rate constants are seen to increase with increase in the peak intensity (#epsilon#_0) of the electric field of light. The possibility of additional transient bound states being generated at the high intensities of light and its possible consequences on the observed ionization rates are explored. The environmental effects on the dynamics are sought to be modeled by allowing the well depth (V_0) to fluctuate randomly [V_0(t) = V_0 + #DELTA# VR(t); R(t) randomly fluctuates between +1 and -1 with time, #DELTA# V is fixed]. The ionization rate constants (k_#epsilon#) are shown to be significantly affected by fluctuations in V_0 and pass through a well-defined minimum in each case for a certain specified frequency of fluctuation. An alternative model potential V(x) = -V_0e~(-#sigma#x) is also shown to yield similar results.
机译:卤化物离子的电子态由一维哈密顿量建模,势能为V(x)= -V_0e〜(-#sigma#x〜2)。两个参数V_0和#sigma#通过要求V(x)固定),以重现实验中观察到的有关卤化物离子的基态电离电势。在每种情况下,如此产生的电势仅显示一种结合状态。时间相关的傅里​​叶网格哈密顿方法用于跟踪强度相当高的单色光中的电离动力学。在最一般的情况下,总哈密顿量为H(t)= P_x〜2 / 2m-V_0e〜(-#sigma#x〜2)-#epsilon#_0s(t)ex sin(#omega#t)。对于脉冲场[s(t)= sin〜2(#pi#t / t_p)],可以看到,计算出的电离速率常数随着光电场的峰值强度(#epsilon#_0)的增加而增加。探索了在高强度的光下产生额外的瞬态束缚态的可能性及其对观测到的电离速率的可能影响。力求通过允许井深(V_0)随机波动[V_0(t)= V_0 +#DELTA#VR(t); R(t)随时间在+1和-1之间随机波动,#DELTA#V是固定的]。电离速率常数(k_#epsilon#)受V_0的波动影响很大,并且对于每种特定的波动频率,都经过明确定义的最小值。还显示了替代模型电位V(x)= -V_0e〜(-#sigma#x)产生相似的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号