...
首页> 外文期刊>International Journal of Solids and Structures >An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes
【24h】

An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes

机译:碳纳米管力学性能的分子分析力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

An analytical molecular structural mechanics model for the prediction of mechanical properties of defect-free carbon nanocubes is developed by incorporating the modified Morse potential with an analytical molecular structural model. The developed model is capable of predicting Young's moduli, Poisson's ratios and stress-strain relationships of carbon nanocubes under tension and torsion loading conditions. Results on the mechanical properties of single-walled carbon nanocubes show that Young's moduli of carbon nanotubes are sensitive to the tube diameter and the helicity. Young's moduli of both armchair and zigzag carbon nanotubes increase monotonically and approach Young's modulus of graphite when the tube diameter is increased. The nonlinear stress-strain relationships for defect-free nanotubes have been predicted, which gives a good approximation on the ultimate strength and strain to failure of nanotubes. Armchair nanotubes exhibit higher tensile strength than zigzag nanotubes but their torsion strengths are identical based on the present study. The present theoretical investigation provides a very simple approach to predict the mechanical properties of carbon nanotubes. (C) 2004 Elsevier Ltd. All rights reserved.
机译:通过将修正的莫尔斯电势与分析分子结构模型相结合,建立了用于预测无缺陷碳纳米立方体力学性能的分析分子结构力学模型。所开发的模型能够预测在张力和扭转载荷条件下碳纳米立方体的杨氏模量,泊松比和应力-应变关系。单壁碳纳米管力学性能的结果表明,碳纳米管的杨氏模量对管的直径和螺旋度敏感。扶手椅形碳纤维和之字形碳纳米管的杨氏模量单调增加,并且当管直径增加时接近石墨的杨氏模量。已经预测了无缺陷纳米管的非线性应力-应变关系,这为纳米管的极限强度和破坏应变提供了很好的近似值。扶手椅纳米管比之字形纳米管具有更高的拉伸强度,但根据本研究,它们的抗扭强度相同。本理论研究提供了一种非常简单的方法来预测碳纳米管的机械性能。 (C)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号