...
首页> 外文期刊>Ecological Applications >The enigma of progress in denitrification research
【24h】

The enigma of progress in denitrification research

机译:反硝化研究进展之谜

获取原文
获取原文并翻译 | 示例
           

摘要

Humans have dramatically increased the amount of reactive nitrogen (primarily ammonium, nitrogen oxides, and organically bound N) circulating in the biosphere and atmosphere, creating a wide array of desirable products (e.g., food production) and undesirable consequences (e.g., eutrophication of aquatic ecosystems and air pollution). Only when this reactive N is converted back to the chemically unreactive dinitrogen (N-2) form, do these cascading effects of elevated reactive N cease to be of concern. Among the quantitatively most important processes for converting reactive N to N-2 gas is the biological process of classical denitrification, in which oxides of nitrogen are used as terminal electron acceptors in anaerobic respiration. This Invited Feature on denitrification includes a series of papers that integrate our current state of knowledge across terrestrial, freshwater, and marine systems on denitrification rates, controlling factors, and methodologies for measuring and modeling denitrification. In this paper, we present an overview of the role of denitrification within the broader N cycle, the environmental and health concerns that have resulted from human alteration of the N cycle, and a brief historical perspective on why denitrification has been so difficult to study. Despite over a century of research on denitrification and numerous recent technological advances, we still lack a comprehensive, quantitative understanding of denitrification rates and controlling factors across ecosystems. Inherent problems of measuring spatially and temporally heterogeneous N2 production under an N-2-rich atmosphere account for much of this slow progress, but lack of interdisciplinary communication of research results and methodological developments has also impeded denitrification research. An integrated multidisciplinary approach to denitrification research, from upland terrestrial ecosystems, to small streams, river systems, estuaries, and continental shelf ecosystems, and to the open ocean, may yield new insights into denitrification across landscapes and waterscapes.
机译:人类极大地增加了在生物圈和大气中循环的反应性氮(主要是铵,氮氧化物和有机结合的氮)的数量,产生了各种各样的理想产品(例如粮食生产)和不良后果(例如水生富营养化)生态系统和空气污染)。仅当该反应性N转化回化学上不反应的二氮(N-2)形式时,这些反应性N升高的级联效应才不再受到关注。在数量上最重要的将反应性N转化为N-2气体的过程是经典反硝化的生物学过程,在该过程中,氮氧化物被用作厌氧呼吸中的末端电子受体。该反硝化邀请特征包括一系列论文,这些论文整合了我们目前在陆地,淡水和海洋系统上有关反硝化速率,控制因素以及反硝化测量和建模方法的知识水平。在本文中,我们概述了反硝化作用在更广泛的N循环中的作用,人类对N循环的改变所引起的环境和健康问题,以及关于为何难以研究反硝化作用的简要历史观点。尽管进行了一个多世纪的反硝化研究并取得了许多最新的技术进步,但是我们仍然缺乏对整个生态系统中反硝化率和控制因素的全面,定量的了解。在缓慢富氮的环境下,测量时空异质氮产量的内在问题是造成这一缓慢进展的主要原因,但是缺乏跨学科交流的研究结果和方法学发展也阻碍了反硝化研究。从陆地陆地生态系统到小溪流,河流系统,河口和大陆架生态系统,再到开阔海洋,反硝化研究的综合多学科方法可能会为景观和水域反硝化提供新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号