【24h】

Viscosity of magmatic liquids: A model

机译:岩浆液体的粘度:模型

获取原文
获取原文并翻译 | 示例
           

摘要

The viscosity of silicate melts controls magma transport dynamics, eruption style and rates of physicochemical processes (e.g., degassing, crystallization) in natural magmas. Thus a comprehensive viscosity model for magmatic liquids has long been a goal of earth scientists. Here we present a model that predicts the non-Arrhenian Newtonian viscosity of silicate melts as a function of T and melt composition, including the rheologically important volatile constituents H2O and F. Our model is based on > 1770 measurements of viscosity on multicomponent anhydrous and volatile-rich silicate melts. The non-Arrhenian T-dependence of viscosity is accounted for by the VFT equation [log eta=A + B/(T(K) - C)]. The optimization assumes a common, high-T limit (A) for silicate melt viscosity and returns a value for this limit of -4.55 (+0.2) (e.g., log eta 10(-4.6) Pa s). All compositional dependence is ascribed to the parameters B and C and is accounted for by an additional 17 model coefficients. Our model is continuous in composition- and temperature-space and predicts the viscosity of natural volatile-bearing silicate melts (SiO2, Al2O3, TiO2, FeOtot, CaO, MgO, MnO, Na2O, K2O, P2O5, H2O, F2O-1) over fifteen log units of viscosity (10(-1)-10(14) Pa s). The model for viscosity can also predict other transport properties including glass transition temperatures (T-g) and melt fragility (m). We show strong systematic decreases in T-g and m with increasing volatile content. This pattern has implications for predicting styles of volcanic eruption and understanding silicate melt structure. Our Model transforms a quarter-century of experimental study of melt viscosities, into a parameterisation having a predictive capacity that makes it relevant to diverse fields of research including: volcanology, geophysics, petrology and material sciences.
机译:硅酸盐熔体的粘度控制着天然岩浆中的岩浆运输动力学,喷发样式和物理化学过程(例如脱气,结晶)的速率。因此,长期以来,岩浆液体的综合粘度模型一直是地球科学家的目标。在这里,我们提出了一个模型,该模型预测了硅酸盐熔体的非阿仑尼牛顿粘度随T和熔体成分(包括流变学上重要的挥发性成分H2O和F)的变化而变化。我们的模型基于多组分无水和挥发性的> 1770粘度测量值富含硅酸盐的熔体。粘度的非阿仑尼T依赖性通过VFT方程解释[log eta = A + B /(T(K)-C)]。该优化假设硅酸盐熔体粘度的通用高T极限(A),并且返回该极限的值为-4.55(+0.2)(例如,log eta 10(-4.6)Pa s)。所有成分相关性都归因于参数B和C,并由其他17个模型系数来说明。我们的模型在组成和温度空间上是连续的,并预测了天然挥发性含硅酸盐熔体(SiO2,Al2O3,TiO2,FeOtot,CaO,MgO,MnO,Na2O,K2O,P2O5,H2O,F2O-1)的粘度粘度的15个对数单位(10(-1)-10(14)Pa s)。粘度模型还可以预测其他传输特性,包括玻璃化转变温度(T-g)和熔体脆性(m)。我们显示出随着挥发物含量的增加,T-g和m的系统性下降很强。这种模式对于预测火山喷发的样式和理解硅酸盐熔体的结构具有重要意义。我们的模型将四分之一个世纪的熔体粘度实验研究转变为具有预测能力的参数化,使其与包括火山学,地球物理学,岩石学和材料科学在内的各种研究领域相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号