...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Structure and diffusive properties of fluid-filled grain boundaries: An in-situ study using infrared (micro) spectroscopy
【24h】

Structure and diffusive properties of fluid-filled grain boundaries: An in-situ study using infrared (micro) spectroscopy

机译:充满流体的晶界的结构和扩散特性:使用红外(显微)光谱的原位研究

获取原文
获取原文并翻译 | 示例
           

摘要

The rate of numerous diagenetic, deformation and metamorphic processes in crustal rock systems ultimately depends on the structure and diffusive properties of water-bearing grain boundaries. We present the first in-situ spectroscopic study of the nature of aqueous films present in mineral interfaces undergoing stress-induced dissolution or 'pressure solution'. Using infrared micro-spectroscopy, we show that during active pressure dissolution of the (111) plane of halite (NaCl) against a CaF2 plate, the confined intercrystalline liquid has an average thickness of 85-185 mn and occupies a rough, non-equilibrium grain boundary structure. The hydrogen bonding of the water within the grain boundary film is modified due to increased polymerization towards ice-like (hard) water. Simultaneous pressure solution I rate measurements show that diffusion within the grain boundary fluid is about one order of magnitude slower than in bulk solution. During active pressure solution of the (100) plane of halite, a similar non-equilibrium gain boundary structure develops but the average thickness of the confined water film is only similar to 40 nm and no evidence is found for modification of the hydrogen bonding of the Water. The difference in hydrogen bonding between the two orientations studied is attributed to differences in surface charge distribution on the (111) and neutral (100) interfaces in NaCl. The difference in mean film thickness is attributed to differences in crystallographically controlled roughness of the dissolving NaCl Surface. If similar grain boundary thickness and diffusivity effects occur in other rock forming minerals, pressure solution in such systems will tend to be interface reaction controlled and may be capable of producing significant seismic anisotropy. (c) 2005 Elsevier B.V. All rights reserved.
机译:地壳岩石系统中大量成岩,变形和变质过程的速率最终取决于含水晶界的结构和扩散特性。我们提出了第一个原位光谱研究存在于矿物界面中的水膜的性质,该矿物膜经历应力诱导的溶解或“压力溶液”。使用红外显微技术,我们显示了在盐压(NaCl)的(111)平面相对于CaF2板的主动压力下溶解期间,受限的晶间液体的平均厚度为85-185 mn,并占据了粗糙的,不平衡的晶界结构。由于增加了对冰状(硬)水的聚合作用,从而改变了晶界膜中水的氢键。同时进行压力溶液I速率测量表明,晶界流体中的扩散比本体溶液中的扩散慢约一个数量级。在盐岩的(100)面的主动压力解过程中,形成了类似的非平衡增益边界结构,但承压水膜的平均厚度仅接近40 nm,并且没有发现改变其氢键的证据。水。研究的两个方向之间氢键的差异归因于NaCl中(111)和中性(100)界面上的表面电荷分布差异。平均膜厚度的差异归因于溶解的NaCl表面的晶体学控制的粗糙度的差异。如果在其他成岩矿物中发生相似的晶界厚度和扩散效应,则此类系统中的压力溶液将趋于受界面反应控制,并且可能会产生明显的地震各向异性。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号