首页> 外文期刊>Erdol Erdgas Kohle >Closure of Drift-Flux Models for Cuttings Transport Predictions
【24h】

Closure of Drift-Flux Models for Cuttings Transport Predictions

机译:截流运输预测的漂移通量模型的闭合

获取原文
获取原文并翻译 | 示例
           

摘要

Predicting and optimizing hydraulic transport in drilling processes requires the formulation of transport models, which are able to consider the multi-phase flow in the entire wellbore. Here, from an engineering perspective, the drift-flux model is an appropriate approach due to its simplicity and efficiency. It considers only one mixture momentum and two continuity equations. The first describes the mass conservation of the mixture, the second the conservation of the dispersed phase. In the latter, the dispersed phase velocity is coupled with the mixture velocity through a slip velocity, defined as the averaged velocity difference between the mixture and the dispersed phase. In one-dimensional implementations of this model, the slip velocity needs to be correlated to flow variables (in drilling hydraulics: phase properties, eccentricity, drill string angular velocity, inclination and flow rate) through two parameters known as the distribution coefficient and the averaged drift flux velocity. Such parameters are system dependent and need to be generated through experiments [1]. In the case of high pressure-high temperature (HPHT) drilling systems, providing these data experimentally is basically impossible for technical reasons. Here, computational studies or virtual experiments may greatly enhance the closure of these models and quantification of parameters. However, careful validation of the computational models is essential to guarantee the reliability of the data. In this contribution, we present an Eulerian-Lagrangian multi-phase approach which precisely considers the momentum coupling of single particles with the carrying fluid. The method is validated [2] through detailed experimental data obtained in a vertical multiphase flow loop and processed with the particle image velocimetry (PIV) technique [3]. After validation, a sensitivity analysis to understand the effects of flow variables on the transport of cuttings is performed [4]. This is also the basis for the development of parameter models.
机译:预测和优化钻井过程中的液压输送需要制定输送模型,该模型能够考虑整个井眼中的多相流。从工程角度来看,由于其通量简单和效率高,因此它是一种合适的方法。它仅考虑一个混合动量和两个连续性方程。第一个描述混合物的质量守恒,第二个描述分散相的守恒。在后者中,分散相速度通过滑移速度与混合物速度耦合,滑移速度定义为混合物与分散相之间的平均速度差。在此模型的一维实现中,需要通过两个参数将滑移速度与流量变量(在钻井液压系统中:相特性,偏心率,钻柱角速度,倾角和流速)相关联,这两个参数称为分布系数和平均漂移通量速度。这些参数取决于系统,需要通过实验来生成[1]。对于高压高温(HPHT)钻井系统,由于技术原因,基本上不可能通过实验提供这些数据。在这里,计算研究或虚拟实验可以大大增强这些模型的封闭性和参数的量化。但是,仔细验证计算模型对于保证数据的可靠性至关重要。在此贡献中,我们提出了一种欧拉-拉格朗日多相方法,该方法精确地考虑了单个颗粒与载流子的动量耦合。该方法通过在垂直多相流回路中获得的详细实验数据进行了验证[2],并通过粒子图像测速(PIV)技术进行了处理[3]。验证后,进行敏感性分析以了解流量变量对切屑运输的影响[4]。这也是开发参数模型的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号