...
首页> 外文期刊>European journal of parenteral & pharmaceutical sciences: the official journal of the ESPC >The use of computational fluid dynamics for the study of particle dispersion routes in the filling area of a blow-fill-seal process
【24h】

The use of computational fluid dynamics for the study of particle dispersion routes in the filling area of a blow-fill-seal process

机译:利用计算流体动力学研究吹填-密封过程的填充区域中的颗粒扩散路径

获取原文
获取原文并翻译 | 示例
           

摘要

An important issue when producing sterile drugs or medicinal products by aseptic processing with blow-fill-seal technology is to achieve an airborne particle cleanliness of ISO Class 5 for particles >=0.5 micron for US and EU, and ISO Class 4.8 for particles >=5.0 micron for EU compliance in the critical area, which includes the filling zone. Most blow-fill-seal machines are equipped with a filling shroud in the filling area, above the ampoules. The shrouds are often pressurised using either HEPA-filtered air or sterile filtered air. The pressure inside the shroud results in a downwards directed airflow, which creates a cleaner environment around the open ampoules during the filling process than the immediate surroundings in the bowels of the machine. The clean environment within the shroud also provides protection for the filling mandrel and nozzles.This paper describes the use of computational fluid dynamics to simulate air velocity magnitudes and mass flow rates as a means of better understanding particle dispersion routes in the filling area of a blow-fill-seal process and the impact different parameter settings can have on airborne particle concentrations in the filling area. The results show that the movements of the mandrel, together with its nozzles, is the main cause of particles present in the filling shroud during the manufacturing process. The computational fluid dynamics results suggest that particle concentrations can be reduced by changing the mandrel velocity and the mandrel shape. It should be noted that results presented in this paper are limited to one type of BFS machine.
机译:通过吹气-灌封技术进行无菌处理生产无菌药物或药用产品时,一个重要的问题是,对于大于等于0.5微米的颗粒,对于美国和欧盟,要达到ISO 5级的空气传播颗粒清洁度;对于大于等于0.5微米的颗粒,要达到ISO 4.8级的空气传播颗粒洁净度在关键区域(包括填充区)符合欧盟标准的5.0微米。大多数吹气-灌装-封口机在安瓿瓶上方的灌装区域均配有灌装罩。护罩通常使用HEPA过滤空气或无菌过滤空气加压。护罩内部的压力导致向下的气流,在灌装过程中,在开口安瓿周围形成比机器肠道周围更干净的环境。护罩内清洁的环境还为灌装芯棒和喷嘴提供了保护。本文介绍了使用计算流体动力学来模拟空气速度大小和质量流率的方法,以更好地了解吹塑灌装区域中的颗粒扩散途径。 -灌装-密封过程以及不同参数设置对灌装区域中空气中颗粒物浓度的影响。结果表明,芯棒及其喷嘴的运动是制造过程中填充罩中存在颗粒的主要原因。计算流体动力学结果表明,可以通过更改心轴速度和心轴形状来降低颗粒浓度。应当指出,本文介绍的结果仅限于一种BFS机器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号