...
首页> 外文期刊>Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films >Review of major technologies improving surface performances of Ti alloys for implant biomaterials
【24h】

Review of major technologies improving surface performances of Ti alloys for implant biomaterials

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Ti alloys have many excellent properties, including low elastic modulus, desired corrosion resistance, nontoxicity, and biocompatibility. Hence, they promise to be major hard-tissue implant biomaterials (HTIBs). However, some properties, like surface hardness, wearability, and cellular activity, need to be enhanced. Moreover, their corrosion resistance in simulated body fluids and biocompatibility also need to be investigated systematically before practical applications. As HTIBs, the primary properties in clinical applications are wearability, corrosion resistance, and biocompatibility. Surface modification is a commonly used effective way to improve the above-mentioned disadvantages. This work is a brief review of the main surface modification technologies of Ti alloys for HTIBs (hereafter referred to as Ti alloys). The main surface modification technologies of Ti alloys are divided into four types, namely, physical technologies, chemical technologies, electrochemical technologies, and surface plastic deformation technologies. The principle and applications of these four types of surface modification technologies on Ti alloys are introduced one by one. Finally, the future directions for the surface modification of Ti alloys are proposed. nbsp;Published under an exclusive license by the AVS.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号