首页> 外文期刊>European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fuer Pharmazeutische Verfahrenstechnik e.V >Freeze-drying simulation framework coupling product attributes and equipment capability: Toward accelerating process by equipment modifications
【24h】

Freeze-drying simulation framework coupling product attributes and equipment capability: Toward accelerating process by equipment modifications

机译:结合产品属性和设备性能的冻干模拟框架:通过设备改造实现加速过程

获取原文
获取原文并翻译 | 示例
           

摘要

A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals.
机译:通过将产品属性和设备功能耦合到统一的仿真框架中,提出了一种基于物理的模型,用于药物冷冻干燥中发生的升华-运输-冷凝过程。系统级模型用于确定生产条件干燥机的工作条件(例如搁板温度,箱内压力和负载大小)对发生窒息的影响。已将与120到485 L负载的生产规模运行相对应的几个数据集与模拟进行了比较。数据子集用于校准,而另一数据集对应于150 L的负载用于模型验证。窒息的开始和程度以及所测产品温度的模型预测与生产规模的测量非常吻合。此外,我们研究了在生产规模的冷冻干燥机中,带有阀门和挡板的管道对蒸汽传输的抵抗性。计算流体动力学(CFD)技术加上系统级的非稳态传热传质模型,可以在考虑特定干燥机设计的情况下预测动态过程条件。针对生产规模的冻干机,此处介绍的管道中的流动结构的CFD建模通过几个设计修改量化了减少流动障碍的好处。发现使用组合的阀-挡板系统可以使蒸气流速增加2.2倍。此外,较小的设计更改(例如将挡板向下游移动约10 cm)可将流速提高54%。所提出的设计更改可以提高干燥速率,提高效率,并由于蒸气流动路径中的障碍物较少而减少了循环时间。综合了系统级模型和详细CFD计算的仿真框架,可以为生物药品的更高效,更稳固的冷冻干燥提供过程分析工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号