...
【24h】

Multiphase flow modeling of metallurgical flows

机译:冶金流的多相流模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Multiphase flow models have been improved significantly during the last two decades. Together with the development of more advanced numerical techniques and faster and cheaper computers we now see that computational fluid dynamics (CFD) becomes a powerful tool in predicting the performance of complex industrial processes. In particular the processes faced by the metallurgical industries may serve as examples of such complexity. In the metallurgical processes transport phenomena take place at a number of different length scales co-existing in the flow. Heat, mass and momentum exchange, turbulence, reaction kinetics, electromagnetics arc some of the phenomena, which must be dealt with. Typically, metallurgical applications may include flows with co-existing phases of solids, gas and liquid, which may have internal dispersions of droplets, particles and bubbles. In addition each phase may consist of many different species. Often, the researcher must choose with care the mix of numerical techniques and modeling concepts which. together with the appropriate physics and limited computer power, can bring forward a successful CFD model for a metallurgical process. This paper will mainly discuss work done by our group at SINTEF Materials Technology. The presented multiphase flow applications range from dispersed to separated flows and include the effects of free surface flows and wetting phenomena. By applying fall or non-wetting boundary conditions to free surface simulations, important industrial phenomena are demonstrated. By using an appropriate mix of techniques the larger scale models may be button sub-models which again can make up the hierarchical structure of a CFD model for an entire process or process unit. The models at each level of such a hierarchical structure may be developed based on more detailed CFD models. (C) 2002 Elsevier Science Inc. All rights reserved. [References: 30]
机译:在过去的二十年中,多相流模型得到了显着改善。随着更先进的数值技术和更快,更便宜的计算机的发展,我们现在看到,计算流体动力学(CFD)成为预测复杂工业过程性能的强大工具。尤其是冶金工业面临的过程可以作为这种复杂性的例子。在冶金过程中,输送现象在流中共存的许多不同的长度尺度上发生。热量,质量和动量交换,湍流,反应动力学,电磁学是其中一些现象,必须加以解决。典型地,冶金应用可包括具有固相,气体和液体的共存相的流,其可具有液滴,颗粒和气泡的内部分散。此外,每个阶段可能由许多不同的物种组成。通常,研究人员必须谨慎选择数值技术和建模概念的组合。再加上适当的物理条件和有限的计算机功能,可以为冶金过程提出成功的CFD模型。本文将主要讨论SINTEF材料技术小组的工作。提出的多相流应用范围从分散流到分离流,并包括自由表面流和润湿现象的影响。通过将跌落或非润湿边界条件应用于自由表面模拟,可以证明重要的工业现象。通过使用适当的技术组合,较大规模的模型可以是按钮子模型,其又可以组成整个过程或过程单元的CFD模型的层次结构。可以基于更详细的CFD模型来开发这种层次结构的每个级别的模型。 (C)2002 Elsevier Science Inc.保留所有权利。 [参考:30]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号