首页> 外文期刊>Geochemistry, geophysics, geosystems >What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis
【24h】

What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis

机译:当沿海沼泽生态系统因盐度增加而变化时,土壤有机碳会发生什么变化?使用倾斜热解的探索

获取原文
获取原文并翻译 | 示例
           

摘要

Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. To understand the effect of sea level rise on organic carbon fate and preservation in this global sink, it is necessary to characterize differences in the biogeochemical stability of coastal wetland soil organic carbon (SOC). Here we use ramped pyrolysis/oxidation decomposition characteristics as proxies for SOC stability to understand the fate of carbon storage in coastal wetlands comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. Soils from three wetland types (fresh, brackish, and salt marshes) along a salinity gradient were subjected to ramped pyrolysis analysis to evaluate decomposition characteristics related to thermochemical stability of SOC. At equivalent soil depths, we observed that fresh marsh SOC was more stable than brackish and salt marsh SOC. Depth, isotopic, elemental, and chemical compositions, bulk density, and water content of SOC all exhibited different relationships with SOC stability across the marsh salinity gradient, indicative of different controls on SOC stability within each marsh type. The differences in stability imply stronger preservation potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Considering projected marsh ecosystem responses to sea level rise, these observed stability differences are important in planning and implementing coastal wetland carbon-focused remediation and improving climate model feedbacks with the carbon cycle. Specifically, our results imply that ecosystem changes associated with sea level rise will initiate the accumulation of less stable carbon in coastal wetlands.
机译:沿海湿地在全球范围内存储大量有机碳,并且变得越来越容易受到人为海平面上升的影响。为了了解海平面上升对这个全球汇中有机碳命运和保存的影响,有必要描述沿海湿地土壤有机碳(SOC)在生物地球化学稳定性方面的差异。在这里,我们使用倾斜的热解/氧化分解特性作为SOC稳定性的代理,以了解包括密西西比河三角洲平原在内的沿海湿地中碳储量的命运,该地区经历了局部海平面的快速上升。对沿盐度梯度的三种湿地类型(鲜,微咸和盐沼)的土壤进行倾斜热解分析,以评估与SOC热化学稳定性有关的分解特性。在相等的土壤深度下,我们观察到新鲜的沼泽SOC比微咸和盐沼SOC更稳定。在整个沼泽盐度梯度上,SOC的深度,同位素,元素和化学组成,堆积密度和水含量均与SOC稳定性表现出不同的关系,表明每种沼泽类型中SOC稳定性的控制不同。与盐和微咸沼泽相比,稳定性的差异意味着新鲜沼泽土壤碳具有更强的保存潜力。考虑到预计的沼泽生态系统对海平面上升的响应,这些观测到的稳定性差异对于规划和实施以碳为重点的沿海湿地碳治理以及改善碳循环带来的气候模型反馈非常重要。具体而言,我们的结果暗示与海平面上升相关的生态系统变化将引发沿海湿地不稳定碳的积累。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号