...
首页> 外文期刊>Geochemistry: Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology >Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone-proppant systems
【24h】

Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone-proppant systems

机译:水力压裂增产技术和地层破坏机理—致密砂岩支撑系统实验室测试的启示

获取原文
获取原文并翻译 | 示例
           

摘要

Reservoir formation damage may seriously affect the productivity of a reservoir during various phases of fluid recovery from the subsurface. Hydraulic fracturing technology is one tool to overcome inflow impairments due to formation damage and to increase the productivity of reservoirs. However, the increase in productivity by hydraulic fracturing operations can be limited by permeability alterations adjacent to the newly created fracture face. Such an impairment of the inflow to the fracture is commonly referred to as fracture face skin (FFS). Here, we focus on mechanically induced fracture face skin, which may result from stress-induced mechanical interactions between proppants and reservoir rock during production. In order to achieve sustainable, long-term productivity from a reservoir, it is indispensable to understand the hydraulic and mechanical interactions in rock-proppant systems. We performed permeability measurements on tight sandstones with propped fractures under stress using two different flow cells, allowing to localise and quantify the mechanical damage at the fracture face. The laboratory experiments revealed a permeability reduction of this rock-proppant system down to 77% of initial rock permeability at 50 MPa differential stress leading to a permeability reduction in the fracture face skin zone up to a factor of 6. Considerable mechanical damage at the rock-proppant interface was already observed for stresses of about 5 MPa. Microstructure analysis identified quartz grain crushing, fines production, and pore space blocking at the fracture face causing the observed mechanically induced FFS. At higher stresses, damage and embedment of the ceramic proppants further reduces the fracture permeability. Therefore, even low differential stresses, which are expected under in-situ conditions, may considerably affect the productivity of hydraulic proppant fracturing stimulation campaigns, in particular in unconventional reservoirs where the fracture face is considerably larger compared to conventional hydraulic stimulations.
机译:在从地下采油的各个阶段中,储层的破坏可能严重影响储层的生产率。水力压裂技术是一种克服因地层破坏而引起的流入损害并提高储层生产率的工具。但是,由于水力压裂作业所导致的生产率提高,可能会受到与新产生的裂缝面相邻的渗透率变化的限制。这种对骨折的流入的损害通常被称为骨折面皮肤(FFS)。在这里,我们集中于机械诱导的断面皮肤,这可能是由于在生产过程中支撑剂与储层岩石之间应力诱导的机械相互作用所致。为了从油藏中获得可持续的长期生产力,了解岩石支撑剂系统中的水力和机械相互作用是必不可少的。我们使用两个不同的流动单元,在应力作用下的带有压裂裂缝的致密砂岩上进行了渗透率测量,从而可以定位和量化裂缝面的机械损伤。实验室实验表明,该岩石支撑剂系统在50 MPa压差下的渗透率降低至初始岩石渗透率的77%,导致裂缝面表层区域的渗透率降低达6倍。已经观察到支撑剂界面的应力约为5 MPa。微观结构分析确定了石英晶粒的破碎,细粉的产生以及在断裂面上的孔隙空间阻塞,从而导致观察到的机械感应FFS。在较高的应力下,陶瓷支撑剂的损坏和包埋会进一步降低断裂渗透率。因此,在原位条件下预期的甚至低的差应力也可能显着影响水力支撑剂压裂增产活动的生产率,特别是在与常规水力增产相比裂缝面大得多的非常规油藏中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号