...
首页> 外文期刊>Geochemical Journal >delta C-13 of marine organic matter and ocean pH
【24h】

delta C-13 of marine organic matter and ocean pH

机译:海洋有机物和海洋pH的C-13值

获取原文
获取原文并翻译 | 示例
           

摘要

The stable carbon isotope ratio (delta(13)C) organic matter from the deep sea sediments shows an increase of 1 to 2 parts per thousand during glacial periods relative to inter glacial periods (Muller et al., 1983; Fontugne and Duplessy, 1986; Sackett, 1986; Sarkar et al., 1993). This has been variously explained as due to (I)change in the relative mixing proportions of the marine (delta(13)C = -20 parts per thousand) and terrestrial (delta(13)C = -26 parts per thousand) organic matter; (2) reduction in the pCO(2) of the surface oceans accompanying that in the atmosphere (Rau et al., 1991) and (3) change in the oxic/anoxic conditions in the deep sea environment induced by changes in the surface ocean productivity. While these interpretations may have some merit, we suggest an alternative possibility, viz., a reduced availability of dissolved CO2 in the surface ocean for photosynthesis during glacial times due to (a) a reduction in the atmospheric CO2 concentration (Barnola et al., 1987) and (b) enhanced rates of photosynthesis due to a more vigorous atmospheric circulation in some regions (e.g., Pacific, Pedersen, 1983) or (c) reduced rates of air-sea exchange of CO2 due to the failure of monsoons in the northern Indian Ocean (Duplessy, 1982; Prell, 1984; Sarkar er al., 1990; Krishnamurthy, 1990). These would result in an increased use of dissolved bicarbonate (Hayes, 1993)-enriched in C-13 by 9 parts per thousand relative to dissolved CO2, thereby enriching the glacial organic matter in C-13 and causing an increase in oceanic pH. Using data reported for the northern Indian Ocean, we calculate such pH changes to be in the range of 0.01 to 0.13, consistent with recent estimates based on boron isotope analysis (Sanyal er al., 1995). [References: 19]
机译:与冰川期相比,冰川期的深海沉积物中稳定的碳同位素比(delta(13)C)有机物质增加了千分之1至2(Muller等,1983; Fontugne and Duplessy,1986) ; Sackett,1986; Sarkar等,1993)。对此有不同的解释,是由于(I)海洋(delta(13)C = -20千分之一)和陆地(delta(13)C = -26千分之一)有机物的相对混合比例的变化; (2)伴随着大气中pCO(2)的减少(Rau et al。,1991)和(3)深海环境中由表层海洋变化引起的有氧/缺氧条件的变化生产率。虽然这些解释可能有一些优点,但我们提出了另一种可能性,即由于(a)大气CO2浓度的降低,冰河时期表层海洋中用于光合作用的溶解CO2的可用性降低(Barnola等, 1987年)和(b)由于某些地区大气循环更加活跃而提高了光合作用速率(例如Pacific,Pedersen,1983年),或者(c)由于季风的失败导致海气交换空气的速率降低了。印度洋北部(Duplessy,1982; Prell,1984; Sarkar等,1990; Krishnamurthy,1990)。这些将导致富含溶解在碳酸氢盐中的碳酸氢盐(Hayes,1993)的使用相对于溶解的二氧化碳增加千分之九(9),从而丰富了C-13中的冰川有机质,并导致海洋pH值增加。使用北部印度洋报道的数据,我们计算出这种pH值变化范围为0.01至0.13,这与基于硼同位素分析的最新估计值相符(Sanyal等,1995)。 [参考:19]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号