首页> 外文期刊>Geochemical Journal >Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems
【24h】

Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems

机译:冲绳海槽中部Iheya North油田的热液流体地球化学:对海底流体循环系统中甲烷起源的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Geochemical characteristics of hydrothermal fluids in the Iheya North hydrothermal field, mid-Okinawa Trough, was investigated. Twelve-years observation reveals temporal variation of vent fluid chemistry potentially controlled by temporally varying pattern of the phase-separation and -segregation, while the constant Element/C1 ratios among the periods and chimneys indicate the stable chemical composition of the source hydrothermal fluid prior to undergoing phase-separation. The high K contents in the estimated source fluid are typical in the arc-backarc hydrothermal systems due to the hydrothermal reaction with the K-enriched felsic rocks. The high I, B and NH4 contents and alkalinity are derived from decomposition of the sedimentary organic matters. Compositional and isotopic properties of gas species, CH_4, H_2, CO_2, and C_2H_6, strongly suggest a dominance of biogenic CH_4 associated with the sedimentary organic matter. Based on the carbon mass balance calculation and the multidisciplinary investigations of the Iheya North hydrothermal system since the discovery, we hypothesized that the microbial methanogenesis occurs not only within the Central Valley where hydrothermal vents exist, but also in the spatially abundant and widespread basin-filling sediments surrounding the Iheya North Knoll, and that the microbially produced CH_4 is recharged together with the source fluid into the deep hydrothermal reaction zone. This "Microbial Methanogenesis at Recharge area in hydrothermal circulation" (MMR) model would be an implication for the generation and incorporation of hydrothermal fluid CH_4 in the deep-sea hydrothermal systems but also for those of cold seep CH_4 and for the presently uncertain hydrothermal fluid paths in the subseafloor environments. In the near future, the IODP drilling will be conducted in the Iheya North hydrothermal system, and give an excellent opportunity to testify our MMR model.
机译:研究了冲绳海槽中部伊贺谷北部热液场中的热液流体的地球化学特征。十二年的观察表明,排放流体化学成分的时间变化可能受相分离和偏析的时间变化模式控制,而各周期和烟囱中恒定的Element / C1比值表明源热液在注入之前是稳定的化学成分。进行相分离。由于与富含钾的长英质岩石发生水热反应,在弧后弧热液系统中典型的估算源流体中的高K含量。高I,B和NH4含量和碱度来自沉积有机物的分解。气体物种CH_4,H_2,CO_2和C_2H_6的组成和同位素特性强烈表明与沉积有机质有关的生物CH_4占主导地位。自发现以来,基于碳质平衡计算和对Iheya North水热系统的多学科研究,我们假设微生物甲烷生成不仅发生在热液喷口存在的中央谷地内,而且还发生在空间丰富且分布广泛的盆地充填中Iheya North Knoll周围的沉积物,以及微生物产生的CH_4与源流体一起被充入深水热反应区。这种“热液循环补给区的微生物甲烷生成”(MMR)模型将对深海热液系统中的热液CH_4的生成和结合产生影响,但对于冷渗流CH_4的系统和目前不确定的热液也将产生影响。海底环境中的路径。在不久的将来,IODP钻探将在北伊希亚热液系统中进行,这将为证明我们的MMR模型提供极好的机会。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号