首页> 外文期刊>Marine Geology >Mechanical response of sediments to bubble growth
【24h】

Mechanical response of sediments to bubble growth

机译:沉积物对气泡生长的机械响应

获取原文
获取原文并翻译 | 示例
           

摘要

Modeling the process of bubble growth in sediments requires an understanding of the physics that controls bubble shape and the interaction of the growing bubble with the sediment. To acquire this understanding we have conducted experiments in which we have injected gas through a fine capillary into natural and surrogate sediment samples and have monitored pressure during bubble growth to provide information about stress and strain. In gas injection studies with natural sediment samples, we have observed two modes of bubble growth behavior. One of these modes, characterized by a saw-tooth record of pressure as the bubble grows, is consistent with fracture of the medium. Observations indicate that bubble growth by fracture should correspond to bubbles that are coin- or disk-shaped. This shape is confirmed in observations of bubbles in natural sediments and in our studies of bubble injection into gelatin, a surrogate sediment material. Interpretation of the stress-strain results for bubble growth also required that we measure Young's modulus, E. The measurements show E to be near 0.14 MN m~2, which differs by more than 4 orders of magnitude from values that have been reported in the literature. Our measurements of E give substantially better estimates of bubble shape than are predicted using the literature values. Our data are interpreted with linear elastic fracture mechanics (LEFM) which predicts that the critical pressure for bubble growth will depend on the bubble volume, V raised to the - 1/5 power. While evidence of substantial heterogeneity in sediment properties is apparent in our results, this V~(-1/5) dependence is confirmed. Through application of LEFM theory, we have determined the critical stress intensity factor, K_(1c), a material property and the principal determinant of bubble shape and growth by fracture. Our values of K_(1c) range from approx 2.8 X 10~(-4) MN m~(-3/2) to approx 4.9 X 10~(-4) MN m~(-3/2) for our natural sediment samples from Cole Harbor, Nova Scotia. We have also estimated the critical stress intensity factor for Eckernforde Bay samples by analyzing published images of natural bubbles. The K_(1c) obtained in this way is similar to our Cole Harbor results and is approx 5.5 X 10~(-4) MN m~(-3/2).
机译:对沉积物中气泡生长过程进行建模需要了解控制气泡形状以及生长中的气泡与沉积物相互作用的物理原理。为了获得这种理解,我们进行了一些实验,在这些实验中,我们通过细毛细管向天然和替代沉积物中采样了气体,并在气泡生长过程中监测了压力,以提供有关应力和应变的信息。在使用天然沉积物样品进行注气研究中,我们观察到了两种气泡生长行为模式。这些模式之一的特征是随着气泡的增长而出现锯齿状的压力记录,这与介质的破裂是一致的。观察表明,破裂引起的气泡生长应对应于硬币形或盘形的气泡。通过观察天然沉积物中的气泡以及我们对将气泡注入替代性沉积物明胶中的研究,可以证实这种形状。解释气泡生长的应力应变结果还需要我们测量杨氏模量E。测量结果表明E接近0.14 MN m〜2,与文献报道的值相差超过4个数量级。文学。与使用文献值所预测的相比,我们对E的测量结果对气泡形状的估计要好得多。我们的数据用线性弹性断裂力学(LEFM)进行解释,该模型预测气泡增长的临界压力将取决于气泡体积,V升高至-1/5幂。虽然在我们的结果中明显显示出沉积物性质存在明显的异质性,但这种V〜(-1/5)依赖性得到了证实。通过应用LEFM理论,我们确定了临界应力强度因子K_(1c),材料特性以及气泡形状和断裂增长的主要决定因素。我们的自然沉积物的K_(1c)值范围从大约2.8 X 10〜(-4)MN m〜(-3/2)到大约4.9 X 10〜(-4)MN m〜(-3/2)样本来自新斯科舍省科尔港。通过分析已发布的天然气泡图像,我们还估算了Eckernforde湾样品的临界应力强度因子。以这种方式获得的K_(1c)与我们的科尔港结果相似,约为5.5 X 10〜(-4)MN m〜(-3/2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号