...
首页> 外文期刊>Canadian Geotechnical Journal >Analytical solutions for calculating pore-water pressure in an infinite unsaturated slope with different root architectures
【24h】

Analytical solutions for calculating pore-water pressure in an infinite unsaturated slope with different root architectures

机译:不同根系结构无限饱和土坡中孔隙水压力的解析解

获取原文
获取原文并翻译 | 示例
           

摘要

Vegetation can reduce pore-water pressure in soil by root water uptake. The reduction of pore-water pressure results in higher shear strength, but lower soil water permeability, affecting slope stability and rainfall infiltration, respectively. Effects of different root architectures on root water uptake and hence pore-water pressure distributions are not well understood. In this study, new analytical solutions for calculating pore-water pressure in an infinite unsaturated vegetated slope are derived for different root architectures, namely, uniform, triangular, exponential, and parabolic root architectures. Using the newly developed solutions, four series of analytical parametric analyses are carried out to improve understanding of the factors affecting root water uptake and hence influencing pore-water pressure distributions. In the dry season, different root architectures can lead to large variations in pore-water pressure distributions. It is found that the exponential root architecture induces the highest negative pore-water pressure in the soil, followed by the triangular, uniform, and parabolic root architectures. The maximum negative pore-water pressure induced by the parabolic root architecture is about 77% of that induced by the exponential root architecture in the steady state. For a given root architecture, vegetation in completely decomposed granite (CDG, classified as silty sand) induces higher negative pore-water pressure than in either fine sand or silt. The zone influenced by vegetation can be about three to six times the root depth. In the wet season, after a 10 year return period rainfall with a duration of 24 h, different root architectures show similar pore-water pressure distributions.
机译:植被可以通过吸收根水来降低土壤中的孔隙水压力。孔隙水压力的降低导致较高的抗剪强度,但较低的土壤水渗透性,分别影响边坡稳定性和降雨入渗。不同的根系结构对根系水分吸收的影响以及因此的孔隙水压力分布尚不十分清楚。在这项研究中,针对不同的根系结构,即均匀,三角形,指数和抛物线根系结构,推导了用于计算无限饱和植被坡度中孔隙水压力的新解析解决方案。使用最新开发的解决方案,进行了四个系列的分析参数分析,以增进对影响根系水分吸收并因此影响孔隙水压力分布的因素的理解。在干旱季节,不同的根系结构可能导致孔隙水压力分布发生较大变化。发现指数根结构在土壤中引起最高的负孔隙水压力,其次是三角形,均匀和抛物线形根结构。抛物线状根结构所引起的最大负孔隙水压力约为稳态时指数状根结构所引起的最大负孔隙水压力的77%。对于给定的根系结构,完全分解的花岗岩(CDG,分类为粉砂)中的植被比细砂或粉砂引起更高的负孔隙水压力。受植被影响的区域大约是根深的三到六倍。在雨季,经过长达10年的恢复期降雨24小时后,不同的根系结构显示出相似的孔隙水压力分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号