...
首页> 外文期刊>Mining Engineering >Nonlinear finite element analysis of blade-formation interactions in excavation
【24h】

Nonlinear finite element analysis of blade-formation interactions in excavation

机译:开挖中叶片与地层相互作用的非线性有限元分析

获取原文
获取原文并翻译 | 示例
           

摘要

Excavation and loading are primary operations in the surface mine production chain, constituting a significant component of production costs. This makes excavation and loading important cost centers that need to be improved to lower production costs. Optimizing the design and use of excavators will improve energy efficiency in earthmoving operations, and this requires a thorough understanding of the soil-tool interaction process. Modeling the interaction process accurately is the key to this optimization. Experimental and analytical methods have provided limited information on the behavior of soils during excavation. Finite element (FE) analysis of soil-cutting blade interaction produces some advantages over experimental and analytical methods. However, the soil constitutive equations used in most of the available FE analyses fail to adequately model the plastic behavior of the soil. This work uses FE modeling to study the behavior of formation-cutting blade interactions in dozer excavation. The formation is modeled as a nonlinear elastoplastic material using the modified cam-clay (MCC) model. The model accounts for soil-tool interface friction, and progressive and continuous cutting at the blade tip. The results provide soil forces, a progressive developed failure zone and soil displacement fields. The sensitivity analysis of changes in blade angle on cutting force shows that the cutting force increases with increasing blade angle. The cutting depth of the blade had a similar effect on blade cutting force. Increasing the depth of cut increases the required cutting force. Increasing the coefficient of friction at the soil blade interface increases the blade cutting force. Reducing the coefficient of friction at the soil blade interface from 0.3 to 0.05 reduces the cutting force by 22.3%. The percentage represents the maximum potential savings in blade cutting force. This research initiative advances the frontiers of soil-tool interactions during excavations to expand the limited knowledge in this critical area.
机译:挖掘和装载是露天矿生产链中的主要操作,是生产成本的重要组成部分。这使得挖掘和装载重要的成本中心需要改进以降低生产成本。优化挖掘机的设计和使用将提高土方作业中的能源效率,这需要对土壤工具相互作用过程有透彻的了解。准确建模交互过程是此优化的关键。实验和分析方法提供的有关开挖过程中土壤行为的信息有限。切土刀片相互作用的有限元(FE)分析比实验和分析方法更具优势。但是,大多数可用的有限元分析中使用的土壤本构方程未能充分模拟土壤的塑性行为。这项工作使用有限元建模来研究推土机开挖中地层切割刀片相互作用的行为。使用修改后的凸轮粘土(MCC)模型将地层建模为非线性弹塑性材料。该模型考虑了土壤工具界面的摩擦,并在刀片尖端进行了连续的切削。结果提供了土壤力,逐步发展的破坏带和土壤位移场。刀片角度变化对切削力的敏感性分析表明,切削力随刀片角度的增加而增加。刀片的切割深度对刀片的切割力有类似的影响。增加切削深度会增加所需的切削力。增加土壤刀片界面处的摩擦系数会增加刀片的切割力。将土壤刀片界面的摩擦系数从0.3降低到0.05,可将切削力降低22.3%。该百分比表示刀片切割力的最大潜在节省。这项研究计划开拓了挖掘过程中土壤与工具相互作用的前沿领域,以扩展这一关键领域的有限知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号