...
首页> 外文期刊>Journal of Proteins and Proteomics >Evolutionary aspects of mutation in functional motif and post-translational modifications in SARS-CoV-2 3CLpro (Mpro): an in-silico study
【24h】

Evolutionary aspects of mutation in functional motif and post-translational modifications in SARS-CoV-2 3CLpro (Mpro): an in-silico study

机译:

获取原文
           

摘要

Abstract SARS CoV-2 is the virus that caused the COVID-19 pandemic. The main protease is one of the most prominent pharmacological targets for developing anti-COVID-19 therapeutic drugs (Mpro); SARS-CoV-2 replication is dependent on this component. SARS CoV-2’s Mpro/cysteine protease is quite identical to SARS CoV-1’s Mpro/cysteine protease. However, there is limited information on its structural and conformational properties. The present study aims to perform a complete in silico evaluation of Mpro protein’s physicochemical properties. The motif prediction, post-translational modifications, effect of point mutation, and phylogenetic links were studied with other homologs to understand the molecular and evolutionary mechanisms of these proteins. The Mpro protein sequence was obtained in FASTA format from the RCSB Protein Data Bank. The structure of this protein was further characterized and analyzed using standard bioinformatics methods. According to Mpro’s in-silico characterization, the protein is a basic, non-polar, and thermally stable globular protein. The outcomes of the phylogenetic and synteny study showed that the protein’s functional domain amino acid sequence is substantially conserved. Furthermore, it has undergone many changes at the motif level over time from porcine epidemic diarrhoea virus to SARS-CoV 2, possibly to achieve various functions. Several post-translational modifications (PTMs) were also observed, and the possibilities of changes in Mpro protein exhibit additional orders of peptidase function regulation. During heatmap development, the effect of a point mutation on the Mpro protein was seen. This protein’s structural characterization will aid in a better understanding of its function and mechanism of action.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号