...
首页> 外文期刊>Molecular physics >Structure and thermodynamics of nondipolar molecular liquids and solutions from integral equation theory
【24h】

Structure and thermodynamics of nondipolar molecular liquids and solutions from integral equation theory

机译:非偶极分子液体的结构和热力学及积分方程理论的解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Solvent-induced solute polarisation of nondipolar solvents originates mainly from specific directional interactions and higher electrostatic multipole moments. Popular continuum solvation models such as the polarisable continuum models ignore such interactions and, therefore, cannot adequately model solvation effects on electronic structure in these environments. Important examples of nondipolar solvents that are indistinguishable by continuum methods are benzene and hexafluorobenzene. Both substances have very similar macroscopic properties, while solutes dissolved in either benzene or hexafluorobenzene behave differently due to their inverted electrostatic quadrupole moments and slightly different size. As a first step towards a proper and computationally feasible description of nondipolar molecular solvents, we present here integral equation theory results based on various forms of the reference interaction site model coupled to quantum-chemical calculations for benzene and hexafluorobenzene solutions of small molecules. We analyse solvation structures, also in comparison with molecular dynamics simulations, and show that predictions of transfer Gibbs energies, which define partition constants, benefit substantially from considering the exact, wave function-derived electrostatic field distribution beyond a simple point charge solute model in comparison with experimental data. Moreover, by constructing artificial uncharged and charge-inverted toy models of the solvents, it is possible to dissect the relative importance of dispersion and quadrupolar electrostatic effects on the partitioning equilibria. Such insight can help to design specifically optimised solvents to control solubility and selectivity for a wide range of applications.
机译:溶剂引起的非偶极溶剂的溶质极化主要源自特定的方向性相互作用和较高的静电多极矩。流行的连续介质溶剂化模型(例如可极化连续介质模型)会忽略此类相互作用,因此无法在这些环境中充分建模溶剂化作用对电子结构的影响。通过连续方法无法区分的非偶极溶剂的重要例子是苯和六氟苯。两种物质具有非常相似的宏观特性,而溶解在苯或六氟苯中的溶质由于其倒置的静电四极矩和尺寸略有不同而表现不同。作为对非偶极分子溶剂进行适当且在计算上可行的描述的第一步,我们在此提出基于各种形式的参考相互作用位点模型的耦合方程理论结果,再结合小分子苯和六氟苯溶液的量子化学计算。我们还分析了溶剂化结构,并与分子动力学模拟进行了比较,结果表明,定义分区常数的转移吉布斯能量的预测大大受益于考虑了比简单点电荷溶质模型更精确的,基于波函数的静电场分布与实验数据。此外,通过构建溶剂的人工不带电和带电反转的玩具模型,可以分析分散和四极静电效应对分配平衡的相对重要性。这种见识可以帮助设计专门优化的溶剂,以控制溶解度和选择性,从而适用于广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号