首页> 外文期刊>Nano letters >Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale
【24h】

Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale

机译:几何约束决定了临界长度范围内H形键合组件的断裂强度

获取原文
获取原文并翻译 | 示例
           

摘要

The ultrastructure of protein materials such as spider silk, muscle tissue, or amyloid fibers consists primarily of beta-sheets structures, composed of hierarchical assemblies of H-bonds. Despite the weakness of H-bond interactions, which have intermolecular bonds 100 to 1060 times weaker than those in ceramics or metals, these materials combine exceptional strength, robustness, and resilience. We discover that the rupture strength of H-bond assemblies is governed by geometric confinement effects, suggesting that clusters of at most 3-4 H-bonds break concurrently, even under uniform shear loading of a much larger number of H-bonds. This universally valid result leads to an intrinsic strength limitation that suggests that shorter strands with less H-bonds achieve the highest shear strength at a critical length scale. The hypothesis is confirmed by direct large-scale full-atomistic MD simulation studies of beta-sheet structures in explicit solvent. Our finding explains how the intrinsic strength limitation of H-bonds can be overcome by the formation of a nanocomposite structure of H-bond clusters, thereby enabling the formation of larger and much stronger beta-sheet structures. Our results explain recent experimental proteomics data, suggesting a correlation between the shear strength and the prevalence of beta-strand lengths in biology.
机译:诸如蜘蛛丝,肌肉组织或淀粉样蛋白纤维之类的蛋白质材料的超微结构主要由β-折叠结构组成,该结构由H键的分层组件组成。尽管氢键相互作用较弱,其分子间键的强度比陶瓷或金属弱100至1060倍,但这些材料结合了出色的强度,坚固性和回弹力。我们发现,H键组件的断裂强度受几何约束作用的控制,这表明即使在大量H键的均匀剪切载荷下,最多3-4个H键的簇也同时断裂。这一普遍有效的结果导致了固有强度的局限性,这表明具有较少H键的较短股线在临界长度尺度上可获得最高剪切强度。通过在显式溶剂中对β-折叠结构的直接大规模全原子MD模拟研究,证实了这一假设。我们的发现解释了如何通过形成H键簇的纳米复合结构来克服H键固有强度的局限性,从而能够形成更大,更坚固的β-折叠结构。我们的结果解释了最近的实验蛋白质组学数据,表明在生物学中剪切强度和β链长度的普遍性之间存在相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号