首页> 外文期刊>Nanotechnology >Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials
【24h】

Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials

机译:纳米材料的光捕获硅光子晶体谐振器设计的比较

获取原文
获取原文并翻译 | 示例
           

摘要

The use of silicon photonic devices for optical manipulation has recently enabled the direct handling of objects like nucleic acids and nanoparticles that are much smaller than could previously be trapped using traditional laser tweezers. The ability to manipulate even smaller matter however requires the development of photonic structures with even stronger trapping potentials. In this work we investigate theoretically several photonic crystal resonator designs and characterize the achievable trapping stiffness and trapping potential depth (sometimes referred to as the trapping stability). Two effects are shown to increase these trapping parameters: field enhancement in the resonator and strong field containment. We find trapping stiffness as high as 22.3pNnm~(-1) for 100nm polystyrene beads as well as potential depth of 51 000k_BT at T = 300K, for one Watt of power input to the bus waveguide. Under the same conditions for 70nm polystyrene beads, we find a stiffness of 69pNnm~(-1) and a potential depth of 177 000k_BT. Our calculations suggest that with input power of 10mW we could trap particles as small as 7.7nm diameter with a trapping depth of 500k_BT. We expect these traps to eventually enable the manipulation of small matter such as single proteins, carbon nanotubes and metallic nanoparticles.
机译:硅光子器件用于光学操作的使用最近使得能够直接处理比以前使用传统激光镊子所捕获的物体小得多的物体,如核酸和纳米粒子。然而,操纵更小的物质的能力要求开发具有更强捕获势的光子结构。在这项工作中,我们从理论上研究了几种光子晶体谐振器设计,并描述了可实现的俘获刚度和俘获电位深度(有时称为俘获稳定性)。示出了两种效果来增加这些俘获参数:谐振器中的场增强和强场抑制。我们发现,对于一瓦功率输入到总线波导的100nm聚苯乙烯珠,陷阱刚度高达22.3pNnm〜(-1),在T = 300K时势阱深度为51 000k_BT。在相同的条件下,对于70nm的聚苯乙烯珠,我们发现其刚度为69pNnm〜(-1),潜在深度为177 000k_BT。我们的计算表明,在输入功率为10mW的情况下,我们可以捕获直径为7.7nm的粒子,捕获深度为500k_BT。我们希望这些陷阱最终能够操纵小物质,例如单一蛋白质,碳纳米管和金属纳米粒子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号