首页> 外文期刊>Nanotechnology >Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge
【24h】

Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge

机译:电弧放电产生的氧化钨纳米结构的尺寸控制合成及气敏应用

获取原文
获取原文并翻译 | 示例
           

摘要

Several different synthetic methods have been developed to fabricate tungsten oxide (WO_3) nanostructures, but most of them require exotic reagents or are unsuitable for mass production. In this paper, we present a systematic investigation demonstrating that arc discharge is a fast and inexpensive synthesis method which can be used to produce high quality tungsten oxide nanostructures for NO_2 gas sensing measurements. The as-synthesized WO_3 nanostructures are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), finger-print Raman spectroscopy and proton induced x-ray emission (PIXE). The analysis shows that spheroidal-shaped monoclinic WO _3 crystal nanostructures were produced with an average diameter of 30nm (range 10-100nm) at an arc discharge current of 110A and 300Torr oxygen partial pressure. It is found that the morphology is controlled by the arc discharge parameters of current and oxygen partial pressure, e.g.a high arc discharge current combined with a low oxygen partial pressure results in small WO_3 nanostructures with improved conductivity. Sensors produced from the WO_3 nanostructures show a strong response to NO_2 gas at 325 °C. The ability to tune the morphology of the WO_3 nanostructures makes this method ideal for the fabrication of gas sensing materials.
机译:已经开发了几种不同的合成方法来制造氧化钨(WO_3)纳米结构,但是大多数方法需要特殊的试剂或不适合大规模生产。在本文中,我们进行了系统的研究,证明电弧放电是一种快速且廉价的合成方法,可用于生产用于NO_2气敏测量的高质量氧化钨纳米结构。合成后的WO_3纳米结构的特征在于X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),指纹拉曼光谱和质子诱导的X射线发射(PIXE)。分析表明,在110A的电弧放电电流和300Torr的氧分压下,球形平均单晶WO_3晶体纳米结构的平均直径为30nm(范围为10-100nm)。发现形态受电流和氧分压的电弧放电参数控制,例如高电弧放电电流与低氧分压结合产生具有改善的电导率的小的WO_3纳米结构。由WO_3纳米结构制成的传感器在325°C下显示出对NO_2气体的强烈响应。调谐WO_3纳米结构的形态的能力使该方法成为制造气体传感材料的理想选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号