首页> 外文期刊>Numerical Heat Transfer, Part B. Fundamentals: An International Journal of Computation and Methodology >INCOMPRESSIBLE COMPUTATIONAL FLUID DYNAMICS AND THE CONTINUITY CONSTRAINT METHOD FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS [Review]
【24h】

INCOMPRESSIBLE COMPUTATIONAL FLUID DYNAMICS AND THE CONTINUITY CONSTRAINT METHOD FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS [Review]

机译:三维Navier-Stokes方程的不可压缩的计算流体动力学和连续性约束方法[综述]

获取原文
           

摘要

Rs the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This monograph asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the continuity constraint method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semidiscretization of a Galerkin weak statement, equal-order interpolation for all state variables, a theta-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor weak statement (TWS) formulation for dispersion error control. This monograph presents: (I) the formulation of the unsteady evolution of the divergence error, (2) an investigation of the role of nonsmoothness in the discretized continuity-constraint function, (3) the development of a uniformly H-1 Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, and (4) a derivation of physically and numerically well-posed boundary conditions. In contrast to the general family of ''pressure-relaxation'' incompressible CFD algorithms, the CCM does not use the pressure as merely a mathematical device to constrain the velocity distribution to conserve mass. Rather, the mathematically smooth and physically motivated genuine pressure is an underlying replacement for the nonsmooth continuity-constraint function to control inherent dispersive-error mechanisms. The genuine pressure is calculated by the diagnostic pressure Poisson equation, evaluated using the verified solenoidal velocity field. This new separation of tasks also produces a genuinely clear view of the totally distinct boundary conditions required for the continuity-constraint function and genuine pressure. [References: 186]
机译:由于计算流体动力学(CFD)的领域持续成熟,需要算法来利用逼近理论,数值数学,计算体系结构和硬件方面的最新进展。在不可压缩的流体力学中,满足此要求尤其具有挑战性,在该领域中,健壮的原始变量CFD公式(尽管在三个维度上也都准确有效)仍然是一个遥不可及的目标。该专论断言,实现这一目标的一个关键是认识到压力所承担的双重作用,即,一种瞬时加强质量守恒的机制和一种机械动量定律中的一种力来保持动量。证明这一主张已激发了一种新的,称为原始连续性可变方法(CCM)的原始变量,不可压缩的CFD算法的开发。 CCM的理论基础包括Galerkin弱语句的有限元空间半离散化,所有状态变量的等次插值,θ隐式时间积分方案以及由Taylor弱扩展的拟牛顿迭代程序用于分散误差控制的语句(TWS)公式。该专着提出:(I)散度误差的非平稳演化的公式;(2)对非光滑性在离散连续约束函数中的作用的研究;(3)一致的H-1 Galerkin弱陈述的发展对于雷诺平均的Navier-Stokes压力泊松方程,以及(4)物理和数值良好的边界条件的推导。与一般的“压力松弛”不可压缩CFD算法系列相反,CCM不仅仅将压力用作数学装置来约束速度分布以节省质量。相反,数学上平滑且具有物理动机的真实压力是对控制固有色散误差机制的非平滑连续性约束函数的根本替代。通过诊断压力泊松方程计算真实压力,并使用经过验证的螺线管速度场进行评估。这种新的任务分离方式还为连续性约束功能和真正的压力所需的完全不同的边界条件提供了真正清晰的视图。 [参考:186]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号