...
首页> 外文期刊>Lab on a chip >Enrichment of nanoparticles and bacteria using electroless and manual actuation modes of a bypass nanofluidic device
【24h】

Enrichment of nanoparticles and bacteria using electroless and manual actuation modes of a bypass nanofluidic device

机译:使用旁路纳米流体装置的化学和手动驱动模式富集纳米颗粒和细菌

获取原文
获取原文并翻译 | 示例
           

摘要

Current efforts in nanofluidics aimed at detecting scarce molecules or particles are focused mainly on the development of electrokinetic-based devices. However, these techniques require either integrated or external electrodes, and a potential drop applied across a carrier fluid. One challenge is to develop a new generation of electroless passive devices involving a simple technological process and packaging without embedded electrodes for micro-and nanoparticles enrichment with a view to applications in biology such as the detection of viral agents or cancers biomarkers. This paper presents an innovative technique for particles handling and enrichment based exclusively on a pressure-driven silicon bypass nanofluidic device. The device is fabricated by standard silicon micro-nanofabrication technology. The concentration operation was demonstrated and quantified according to two different actuation modes, which can also be combined to enhance the concentration factor further. The first, "symmetrical" mode involves a symmetric cross-flow effect that concentrates nanoparticles in a very small volume in a very local point of the device. The second mode, "asymmetrical" mode advantageously generates a streaming potential, giving rise to an Electroless Electropreconcentration (EL-EP). The concentration process can be maintained for several hours and concentration factors as high as ~200 have been obtained when both symmetrical and asymmetrical modes are coupled. Proof of concept for concentrating E coli bacteria by the manual actuation of the EL-EP device is also demonstrated in this paper. Experiments demonstrate more than a 50-fold increase in the concentration of £ coli bacteria in only ~40 s.
机译:当前在纳米流体中旨在检测稀缺分子或颗粒的努力主要集中在基于电动的设备的开发上。然而,这些技术需要集成电极或外部电极,并且在载体流体上施加电势降。一个挑战是开发新一代的无电无源设备,该设备涉及简单的工艺流程和封装,无需嵌入式电极即可进行微颗粒和纳米颗粒富集,以期在生物学中应用,例如检测病毒剂或癌症生物标志物。本文提出了仅基于压力驱动的硅旁路纳米流体装置的一种用于颗粒处理和富集的创新技术。该设备是通过标准的硅微纳米制造技术制造的。根据两种不同的驱动模式对浓缩操作进行了演示和量化,也可以将其组合以进一步提高浓缩系数。第一种“对称”模式涉及对称的错流效应,该效应使纳米颗粒以很小的体积集中在设备的非常局部的位置。第二种模式,“非对称”模式有利地产生了流动电势,从而产生了无电电预浓缩(EL-EP)。浓缩过程可以维持几个小时,并且当对称模式和非对称模式都耦合时,浓缩系数高达〜200。本文还证明了通过手动驱动EL-EP设备浓缩大肠杆菌的概念证明。实验表明,仅约40 s内,大肠埃希氏细菌的浓度增加了50倍以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号