...
首页> 外文期刊>International Journal of Parallel Programming >Path analysis and renaming for predicated instruction scheduling
【24h】

Path analysis and renaming for predicated instruction scheduling

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Increases in instruction level parallelism are needed to exploit the potential parallelism available in future wide issue architectures. Predicated execution is an architectural mechanism that increases instruction level parallelism by removing branches and allowing simultaneous execution of multiple paths of control, only committing instructions from the correct path. In order for the complier to expose and use such parallelism, traditional compiler data-flow and path analysis needs to be extended to predicated code. In this paper, we motivate the need for renaming and for predicates that reflect path information. We present Predicated Static Single Assignment (PSSA) which uses renaming and introduces Full-Path Predicates to remove false dependences and enable aggressive predicated optimization and instruction scheduling We demonstrate the usefulness of PSSA for Predicated Speculation and Control Height Reduction. These two predicated code optimizations used during instruction scheduling reduce the dependence length of the critical paths through a predicated region. Our results show that using PSSA to enable speculation and control height reduction reduces execution time from 12 to 68. Increases in instruction level parallelism are needed to exploit the potential parallelism available in future wide issue architectures. Predicated execution is an architectural mechanism that increases instruction level parallelism by removing branches and allowing simultaneous execution of multiple paths of control, only committing instructions from the correct path. In order for the complier to expose and use such parallelism, traditional compiler data-flow and path analysis needs to be extended to predicated code. In this paper, we motivate the need for renaming and for predicates that reflect path information. We present Predicated Static Single Assignment (PSSA) which uses renaming and introduces Full-Path Predicates to remove false dependences and enable aggressive predicated optimization and instruction scheduling We demonstrate the usefulness of PSSA for Predicated Speculation and Control Height Reduction. These two predicated code optimizations used during instruction scheduling reduce the dependence length of the critical paths through a predicated region. Our results show that using PSSA to enable speculation and control height reduction reduces execution time from 12 to 68. References: 30

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号