首页> 外文期刊>RSC Advances >A microfluidic neuronal platform for neuron axotomy and controlled regenerative studies
【24h】

A microfluidic neuronal platform for neuron axotomy and controlled regenerative studies

机译:用于神经元轴突切开和控制再生研究的微流控神经元平台

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the basic mechanisms of neural regeneration after injury is a pre-requisite for developing appropriate treatments. Traditional approaches to model axonal lesions, such as high intensity power laser ablation or sharp metal scratching, are complex to implement, have low throughputs, and generate cuts that are difficult to modulate. We present here a novel reproducible microfluidic approach to model in vitro mechanical lesion of tens to hundreds of axons simultaneously in a controlled manner. The dimensions of the induced axonal injury and its distance from the neuronal cell body are precisely controlled while preserving both the proximal and distal portions of axons. We have observed that distal axons undergo Wallerian-like anterograde degeneration after axotomy; in contrast, proximal portions of the axons remain un-degenerated, possessing the potential to re-grow. More importantly, surpassing the previous axotomy methods performed in Petridishes in which local microenvironments cannot be tailored, our platform holds the capability to implement fine-tuned treatments to lesioned axon stumps in a local, controlled manner. Specifically, molecules such as chondroitin sulphate proteoglycans and its degrading enzyme chondroitinase ABC, hydrogels, and supporting cells have been shown to be deliverable to the lesioned site of injured axons. In addition, this system also permits double interventions at the level of the lesioned axons and the perikaryon. This proves the potential of our model by demonstrating how axonal regrowth can be evaluated under circumstances that are better mimics of biological problems. We believe that this novel mechanical microfluidic axotomy approach is easy to perform, yields high throughput axon lesions, is physiologically relevant, and offers a simplified platform for screening of potential new neurological drugs.
机译:了解损伤后神经再生的基本机制是开发适当治疗方法的先决条件。传统的轴突损伤建模方法,例如高强度激光切除或锋利的金属刮擦,实施起来很复杂,吞吐量低,并且产生难以调节的切口。我们在这里提出一种新颖的可重现的微流控方法,以可控方式同时模拟数十到数百个轴突的体外机械损伤。可以精确控制诱发的轴突损伤的大小及其与神经元细胞体的距离,同时保留轴突的近端和远端部分。我们已经观察到,轴突切开后,远端轴突经历了Wallerian样顺行性变性。相反,轴突的近端部分保持未变性,具有重新生长的潜力。更重要的是,我们的平台超越了以前在Petridishes中执行的无法定制局部微环境的轴切方法,该平台具有以局部可控的方式对病变轴突残端进行微调治疗的能力。具体而言,诸如硫酸软骨素蛋白多糖及其降解酶软骨素酶ABC,水凝胶和支持细胞的分子已显示可递送至受损轴突的病变部位。另外,该系统还允许在病变轴突和核周水平进行双重干预。通过证明在更好地模拟生物学问题的情况下如何评估轴突再生,这证明了我们模型的潜力。我们认为,这种新颖的机械微流控轴索切开方法易于执行,可产生高通量的轴突病变,具有生理相关性,并为筛选潜在的新型神经科药物提供了简化的平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号