首页> 外文期刊>RSC Advances >Rational design of TiO2-V2O5-C nanostructure grafted by N-doped graphene with enhanced photocatalysis and lithium ion store performances
【24h】

Rational design of TiO2-V2O5-C nanostructure grafted by N-doped graphene with enhanced photocatalysis and lithium ion store performances

机译:N掺杂石墨烯接枝的TiO2-V2O5-C纳米结构的合理设计,具有增强的光催化和锂离子存储性能

获取原文
获取原文并翻译 | 示例
           

摘要

Highly ordered mesoporous crystalline C-TiO2-V2O5 core-shell microspheres encapsulated by porous carbon further embedded in N-doped graphene network (GN-TV-C) nanostructures were fabricated by a simple combination of hydrothermal-calculation method. Such material exhibits a highly efficient photocatalytic activity for water splitting, as well as a high specific capacity and exceptional cycle ability in LIBs. The extrusive features of such material include the assembly of components in a manner that enables an effective integration between the constituents and the ability to modify the electronic properties of GN-TV-C. The positive synergistic incorporation between TiO2 and V2O5, the high electrical conductivity, and the three-dimensional hierarchically mesoporous nanostructure of these composites result into a highly active photocatalytic ability, showing patterns of increased light harvesting ability and promoted exciton dissociation, and excellent electrochemical performance in terms of a high rate capability and stable cycling. Profiting from the dual insurance of the flexible carbon layer derived from glucose and elastic GN walls with superior specific surface areas, a significant enhancement in the electron transfer and electronic diffusion channels, and a highly enhanced structural stability of the TiO2-based electrode material were simultaneously obtained. In addition, the synergistic function among TiO2, V2O5 and GN involving the optimized energy gap, the compromised particle assembly and surface defects, as well as their distinctive core-shell nanostructures were extensively studied. The carbon shell serves as a blocking layer that retards the interfacial recombination during photocatalysis, thereby protecting the active materials from pulverization during the superior cycles in the energy store. The current study may provide us an alternative approach for improving the performances of TiO2 nanocrystals used in energy storage and photocatalysis applications.
机译:通过水热计算方法的简单组合,制备了多孔碳包裹的高度有序的介孔晶体C-TiO2-V2O5核壳微球,该碳进一步嵌入N掺杂的石墨烯网络(GN-TV-C)纳米结构中。这种材料对水分解显示出高效的光催化活性,并且在LIB中表现出高的比容量和出色的循环能力。这种材料的突出特征包括组件的组装方式,使组件之间能够有效整合,并具有改变GN-TV-C电子性能的能力。 TiO2和V2O5之间的正协同结合,高电导率以及这些复合材料的三维分级介孔纳米结构导致了高活性的光催化能力,显示出增加的光收集能力和促进的激子解离的模式,以及优异的电化学性能。高速率能力和稳定的循环。同时得益于葡萄糖和弹性GN壁的柔性碳层的双重保险,具有比表面积优越,电子传递和电子扩散通道显着增强以及TiO2基电极材料的结构稳定性大大提高的同时获得。此外,还广泛研究了TiO2,V2O5和GN之间的协同功能,其中涉及优化的能隙,受损的粒子组装和表面缺陷以及其独特的核壳纳米结构。碳壳用作阻挡层,该阻挡层在光催化过程中阻止了界面重组,从而保护了活性材料在储能器中的优异循环中不被粉碎。当前的研究可能会为我们提供一种替代方法,以改善用于能量存储和光催化应用的TiO2纳米晶体的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号