...
首页> 外文期刊>RSC Advances >Hydrothermal synthesis of Fe3O4/RGO composites and investigation of electrochemical performances for energy storage applications
【24h】

Hydrothermal synthesis of Fe3O4/RGO composites and investigation of electrochemical performances for energy storage applications

机译:Fe3O4 / RGO复合材料的水热合成及储能应用的电化学性能研究

获取原文
获取原文并翻译 | 示例
           

摘要

Highly porous nano-structured Fe3O4 particles were successfully prepared on the surface of reduced graphene oxide (RGO) sheets through a one-step hydrothermal method. X-ray diffraction (XRD) and field emission scanning electron microscopy analysis (FE-SEM) confirmed not only the size and porous nature but also the formation of Fe3O4 and Fe2O3-based composites. XRD, FE-SEM and transmission electron microscopy showed the highly crystalline nature of the particles. The reduction of graphene oxide and the formation of a few layers of RGO were confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy analysis. Electrochemical performances of the Fe3O4/RGO composite were evaluated with two electrode configurations using nickel foam as a material support as well as a current collector. The synergistic effect of RGO and the metal oxide were demonstrated in terms of enhanced energy and power density, excellent electrochemical cyclic stability and low IR drop. The specific capacitance of the Fe3O4/RGO composite was found to be similar to 782 F g(-1) at a current density of 3 A g(-1). The improved electrical conductivity, nanometer scale particle dimension and formation of hierarchical networks with effective redox activity contributed to a remarkable supercapacitor performance.
机译:通过一步水热法成功地在还原氧化石墨烯(RGO)片的表面上成功制备了高度多孔的纳米结构Fe3O4颗粒。 X射线衍射(XRD)和场发射扫描电子显微镜分析(FE-SEM)不仅证实了尺寸和多孔性,而且还证实了Fe3O4和Fe2O3基复合材料的形成。 XRD,FE-SEM和透射电子显微镜显示了颗粒的高度结晶性质。通过拉曼光谱和X射线光电子能谱分析证实了氧化石墨烯的还原和几层RGO的形成。 Fe3O4 / RGO复合材料的电化学性能通过使用镍泡沫作为材料载体和集电器的两个电极配置进行评估。从增强的能量和功率密度,优异的电化学循环稳定性和低IR降的方面证明了RGO和金属氧化物的协同作用。发现Fe3O4 / RGO复合材料的比电容在3 A g(-1)的电流密度下与782 F g(-1)相似。改进的电导率,纳米级颗粒尺寸以及具有有效氧化还原活性的分层网络的形成有助于实现卓越的超级电容器性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号