首页> 外文期刊>RSC Advances >Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane
【24h】

Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane

机译:超越燃烧的化学循环:通过化学循环甲烷的部分氧化生产合成气

获取原文
获取原文并翻译 | 示例
           

摘要

The recent surge in natural gas reserves has revived interest in the development of novel processes to convert natural gas into valuable chemical feedstocks. In the present work, we are applying "chemical looping", a technology that has found much attention as a clean combustion technology, towards selective partial oxidation of methane to produce synthesis gas (CLPOM). By tailoring the composition of NixFe1-x-CeO2 oxygen carriers and carefully controlling the supply of oxygen, i.e., the extent of the carrier reduction and oxidation in redox cycles, the reactivity and selectivity of these carriers for partial oxidation was optimized. Addition of a small amount of Ni to iron oxides allowed the combination of the high reactivity of Ni for methane activation with the good syngas selectivity of iron oxides. An optimized carrier with the composition of Ni0.12Fe0.88-CeO2 demonstrated excellent stability in multi-cycle CLPOM operation and high syngas yields with a H-2 : CO ratio of similar to 2 and minimal carbon formation. Finally, a simplified fixed-bed reactor model was used to assess the thermal aspects of operating the process in a periodically operated fixed-bed reactor. We found that the process is highly sensitive to the degree of carrier utilization, but that maximum temperatures can be easily controlled in CLPOM via control of the active metal content and oxygen utilization in the carriers. Overall, chemical looping partial oxidation of methane emerges as an attractive alternative to conventional catalytic partial oxidation, enabling the use of low-cost transition metal oxides and air as oxidant, and resulting in inherently safe reactor operation by avoiding mixed methane/air streams.
机译:最近天然气储量的激增引起了人们对开发将天然气转化为有价值的化学原料的新工艺的兴趣。在目前的工作中,我们正在将“化学循环”技术(一种作为清洁燃烧技术而广受关注的技术)应用于甲烷的选择性部分氧化以生产合成气(CLPOM)。通过调整NixFe1-x-CeO2氧载体的组成并仔细控制氧的供应,即在氧化还原循环中载体还原和氧化的程度,可以优化这些载体对部分氧化的反应性和选择性。向氧化铁中添加少量的Ni可以使Ni用于甲烷活化的高反应性与氧化铁的良好合成气选择性结合在一起。具有Ni0.12Fe0.88-CeO2组成的优化载体在多循环CLPOM操作中表现出出色的稳定性,并且H-2:CO比接近2且碳形成最少,合成气产率高。最后,使用简化的固定床反应器模型来评估在定期运行的固定床反应器中运行过程的热方面。我们发现该过程对载流子利用程度高度敏感,但是通过控制载流子中的活性金属含量和氧气利用率,可以轻松地在CLPOM中控制最高温度。总体而言,甲烷的化学回路部分氧化作为常规催化部分氧化的一种有吸引力的替代方法出现了,可以使用低成本的过渡金属氧化物和空气作为氧化剂,并通过避免混合的甲烷/空气流而固有地安全地运行反应器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号