...
首页> 外文期刊>Cellular Signalling >Filopodia as sensors (Review)
【24h】

Filopodia as sensors (Review)

机译:丝足虫作为传感器(综述)

获取原文
获取原文并翻译 | 示例
           

摘要

Filopodia are sensors on both excitable and non-excitable cells. The sensing function is well documented in neurons and blood vessels of adult animals and is obvious during dorsal closure in embryonic development. Nerve cells extend neurites in a bidirectional fashion with growth cones at the tips where filopodia are concentrated. Their sensing of environmental cues underpins the axon's ability to "guide," bypassing non-target cells and moving toward the target to be innervated. This review focuses on the role of filopodia structure and dynamics in the detection of environmental cues, including both the extracellular matrix (ECM) and the surfaces of neighboring cells. Other protrusions including the stereocilia of the inner ear and epididymus, the invertebrate Type I mechanosensors, and the elongated processes connecting osteocytes, share certain principles of organization with the filopodia. Actin bundles, which may be inside or outside of the excitable cell, function to transduce stress from physical perturbations into ion signals. There are different ways of detecting such perturbations. Osteocyte processes contain an actin core and are physically anchored on an extracellular structure by integrins. Some Type I mechanosensors have bridge proteins that anchor microtubules to the membrane, but bundles of actin in accessory cells exert stress on this complex. Hair cells of the inner ear rely on attachments between the actin-based protrusions to activate ion channels, which then transduce signals to afferent neurons. In adherent filopodia, the focal contacts (FCs) integrated with ECM proteins through integrins may regulate integrin-coupled ion channels to achieve signal transduction. Issues that are not understood include the role of Ca2+ influx in filopodia dynamics and how integrins coordinate or gate signals arising from perturbation of channels by environmental cues.
机译:丝足是可激发和不可激发细胞上的传感器。感觉功能已在成年动物的神经元和血管中得到了充分证明,并且在胚胎发育的背侧闭合过程中很明显。神经细胞以双向方式延伸神经突,在丝状伪足集中的尖端具有生长锥。他们对环境线索的感知增强了轴突“引导”的能力,绕过了非靶细胞并朝着要被神经支配的目标移动。这篇综述集中于丝状伪足的结构和动力学在检测环境线索中的作用,包括细胞外基质(ECM)和邻近细胞的表面。其他突起包括内耳和附睾的纤毛,无脊椎动物的I型机械传感器以及连接骨细胞的细长过程,与丝状​​伪足具有某些组织原则。肌动蛋白束可能位于可激发细胞的内部或外部,其作用是将应力从物理扰动转换为离子信号。有多种检测此类扰动的方法。骨细胞过程包含肌动蛋白核心,并被整联蛋白物理锚定在细胞外结构上。某些I型机械传感器具有将微管锚定在膜上的桥蛋白,但是辅助细胞中的肌动蛋白束会对该复合物施加压力。内耳的毛细胞依靠基于肌动蛋白的突起之间的附着来激活离子通道,然后离子通道将信号转导至传入神经元。在粘附的丝状足病中,通过整合素与ECM蛋白整合的焦点接触(FC)可以调节整合素偶联的离子通道,从而实现信号转导。尚未理解的问题包括Ca2 +流入在丝状伪足动力学中的作用以及整联蛋白如何协调或控制环境线索对通道扰动​​产生的信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号