首页> 外文期刊>Organometallics >Electrophilic methylplatinum complexes: A theoretical study of the mechanism of C-C and C-H bond formation and activation
【24h】

Electrophilic methylplatinum complexes: A theoretical study of the mechanism of C-C and C-H bond formation and activation

机译:亲电子甲基铂配合物:C-C和C-H键形成和活化机理的理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

The reductive elimination of methane or ethane from the five-coordinate intermediate model complexes [PtHMe2L2](+), or [PtMe3L2](+) respectively, and the corresponding C-H or C-C bond activation from the alkane complexes [PtMe(CH4)L-2](+) or [PtMe(C2H6)L-2](+), respectively, have been studied by carrying out extended Huckel molecular orbital (EHMO) calculations and density functional theory (DFT) calculations on both the ground-state and transition-state structures with L = NH3 or PH3. The EHMO calculations on trans-[PtL2-Me-3](+), L = PH3, show that the regular trigonal-bipyramidal (TBP) structure has an orbitally degenerate ground state and should undergo distortion to either the square-pyramidal (SP) or pinched trigonal-bipyramidal (PTBP) structure. In the PTBP structure, two methyl groups are in close proximity (C-Pt-C ca. 70 degrees) and tilted away from each other. Although the tilting leads to a close Pt ... HC contact, no attractive agostic Pt ... H bonding is indicated. The DFT calculations predict that C-H reductive elimination and oxidative addition are much easier than C-C reductive elimination and oxidative addition, but there is no major difference between the activation energies when L = NH3 or PH3. However, the platinum(IV) complexes are relatively more stable when L = NH3 than when L = PH3 compared to the platinum(II) alkane complexes, and so the activation energies for C-H or C-C oxidative addition are calculated to be lower for the NH3 complexes. The platinum(IV) complexes with ligands L mutually cis or trans are most stable in the SP or PTBP stereochemistry, respectively. In the platinum(II) alkane complexes, the stereochemistry with ligands L mutually trans is preferred. The oxidative-addition/reductive-elimination reactions occur by a concerted mechanism, probably with a PTBP complex on the reaction coordinate. For C-H reductive elimination, the methane remains coordinated to platinum through the C-H a complex. For C-C reductive elimination, the transition state is a C-C sigma complex but in the final ethane complex the binding is as a C-H a complex. For methane complexes, the binding is eta(3) but one platinum C-H contact is shorter than the other, while for ethane complexes, the binding is usually eta(4) through two eclipsed platinum C-H sigma-complex interactions, but one appears much stronger than the other. The weaker of these sigma-complex interactions is just strong enough to overcome the tendency of ethane to adopt the staggered conformation (ca. 3 kcal mol(-1)). Activation of the C-C bond of ethane is likely only in systems where the much easier C-H activation is rapid and reversible. [References: 33]
机译:分别从五配位中间体模型配合物[PtHMe2L2](+)或[PtMe3L2](+)中还原去除甲烷或乙烷,并从烷烃配合物[PtMe(CH4)L-中相应地去除C​​H或CC键2](+)或[PtMe(C2H6)L-2](+)分别通过对基态和基态进行扩展的Huckel分子轨道(EHMO)计算和密度泛函理论(DFT)计算得到研究。 L = NH3或PH3的过渡态结构。对反式[PtL2-Me-​​3](+)的EHMO计算,L = PH3,表明规则的三角双锥(TBP)结构具有轨道简并基态,并且应变形为方锥(SP )或三棱锥双锥(PTBP)结构。在PTBP结构中,两个甲基非常接近(C-Pt-C大约70度)并且彼此倾斜。尽管倾斜导致紧密的Pt ... HC接触,但未显示出吸引人的偏执的Pt ... H键。 DFT计算预测,C-H还原消除和氧化加成比C-C还原消除和氧化加成要容易得多,但是当L = NH3或PH3时,活化能之间没有重大差异。然而,与铂(II)烷烃配合物相比,当L = NH3时,铂(IV)配合物相对稳定,而当L = PH3时,则相对稳定,因此计算出的CH3或CC氧化加成的活化能较低。复合体。在SP或PTBP立体化学中,分别具有顺式或反式配体L的铂(IV)配合物最稳定。在铂(II)烷烃络合物中,优选与配体L相互反式的立体化学。氧化加成/还原消除反应是通过协同机制发生的,在反应坐标上可能带有PTBP配合物。对于C-H还原消除,甲烷通过C-H络合物保持与铂的配位。对于C-C还原消除,过渡态为C-Cσ络合物,但在最终的乙烷络合物中,结合形式为C-H络合物。对于甲烷络合物,结合是eta(3),但一个铂CH接触比另一个短,而对于乙烷络合物,结合通常是通过两个黯淡的铂CH sigma-络合物相互作用而成为eta(4),但其中一个似乎更强比其他。这些sigma-complex相互作用的弱点刚好足以克服乙烷采用交错构象(约3 kcal mol(-1))的趋势。乙烷的C-C键的活化仅在快速且可逆的C-H活化容易的系统中才可能发生。 [参考:33]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号