首页> 外文期刊>SAE International Journal of Engines >A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine - Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall
【24h】

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine - Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall

机译:改善火花点火式发动机热效率的数值模拟研究-第1部分:考虑火焰传播,爆震和燃烧室壁的火花点火式发动机燃烧建模以预测发动机性能

获取原文
获取原文并翻译 | 示例
           

摘要

The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2. Part 1 deals with the description of the numerical model and the fundamental characteristics of instantaneous temperature swings in the combustion chamber wall. The numerical model is developed by utilizing GT-POWER combined with three sub-models; a non-dimensional two-zone combustion model, an autoignition model in the unburned gas and an instantaneous heat transfer model in the combustion chamber wall. The combustion model considers the flame speeds affected by the in-cylinder conditions. The Shell model was utilized to predict autoignition. The heat transfer model in the combustion chamber wall calculates the instantaneous one-dimensional thermal conductivity, and further predicts wall surface and inside temperatures. The fluctuation range of calculated temperature swings is reasonably similar to measured data obtained in previous studies.
机译:这项工作的第一个目标是,在考虑爆震避免和缸内气体与燃烧室壁之间的热传递的基础上,开发一种火花点火(SI)发动机燃烧的数值模拟模型。其次,该模型用于研究通过在燃烧室壁上涂覆隔热涂层来减少热量损失的潜力,从而提高发动机的热效率。热损失的减少与提高SI发动机热效率的重要操作因素有关。但是,减少的热损失往往伴随着燃烧室壁温的升高,从而导致SI发动机爆震。因此,该数值模型旨在使研究热损失和爆震发生的相互作用成为可能。本文由第1部分和第2部分组成。第1部分介绍了数值模型的描述以及燃烧室壁瞬时温度波动的基本特征。数值模型是利用GT-POWER与三个子模型相结合而开发的。无量纲两区燃烧模型,未燃烧气体中的自燃模型和燃烧室壁中的瞬时传热模型。燃烧模型考虑了受缸内条件影响的火焰速度。壳模型用于预测自燃。燃烧室壁中的传热模型计算瞬时一维热导率,并进一步预测壁表面和内部温度。计算得出的温度波动的波动范围与先前研究中获得的测量数据相当相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号