首页> 外文期刊>Scripta materialia >Grain boundary distribution and texture in ultrafine-grained copper produced by severe plastic deformation
【24h】

Grain boundary distribution and texture in ultrafine-grained copper produced by severe plastic deformation

机译:严重塑性变形产生的超细晶粒铜的晶界分布和织构

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrafine-grained (UFC3), i.e. nano- and submicrocrystailine materials have attracted great,attention in recent years [,1-16]. This interest is caused by the unusual mechanical and physical properties of these materials. The combination of high strength and high ductility, superplasticity at lqw temperature and high strain rate, enhanced electrical resistivity and other properties distinguish UFG materials from conventional coarse-grained materials. Inert gas condensation, electrodeposition, spray conversion processing, mechanical alloying and severe plastic deformation are used at present for the production of UFG materials. The Ufa research group has been actively employing different schemes of severe plastic deformation to produce UFG materials. Torsion under pressure and equi-channcl angular (ECA) deformation have been used to produce UFG microstruclurcs in different materials (Al-alloys, Cu, Ni, Fe, etc). Experimental data on some mechanical and physical properties of these materials can be found elsewhere [2,4,6,11-14,16]. Although, in general, severe plastic deformation produces larger grain sizes than do most other techniques of UFG microstructure generation, it has some advantages. In particular, it is possible to obtain relatively large bulk specimens without residual porosity, which facilitates mechanical testing. Also, UFG micrqstructure produced by severe deformation is relatively stable, which is not always the case for nanocrystalline materials.
机译:近年来,超细颗粒(UFC3),即纳米和亚微晶丁鱼碱材料引起了极大的关注[,1-16]。这种兴趣是由这些材料的异常机械和物理特性引起的。高强度,高延展性,在室温下的超塑性和高应变率,增强的电阻率和其他特性的结合,使UFG材料与常规的粗粒材料区别开来。 UFG材料的生产目前使用惰性气体冷凝,电沉积,喷涂转化处理,机械合金化和严重的塑性变形。 Ufa研究小组一直在积极采用不同的严重塑性变形方案来生产UFG材料。压力下的扭转和等角度角(ECA)变形已用于在不同材料(铝合金,Cu,Ni,Fe等)中生产UFG微结构。这些材料的一些机械和物理性能的实验数据可以在其他地方找到[2,4,6,11-14,16]。尽管一般而言,严重的塑性变形会比大多数其他UFG显微组织生成技术产生更大的晶粒尺寸,但它具有一些优势。特别地,可以获得没有残留孔隙的相对较大的块状样本,这有助于机械测试。而且,由严重变形产生的UFG微结构是相对稳定的,对于纳米晶体材料并非总是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号