...
首页> 外文期刊>Smart Materials & Structures >Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites
【24h】

Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

机译:磁活性弹性体复合材料大变形弯曲和折叠行为的数值模拟和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a reduction in the amount of magnetic torque transferred from the particles to the matrix.
机译:这项工作旨在为折纸工程应用中使用的磁活性弹性体(MAE)复合结构的数值模拟提供一个框架。折纸工程的新兴领域采用折叠技术,即传统上在单张纸上的折痕阵列,以产生执行有用的工程操作的结构和装置。数值模拟的有效手段提供了一种有效的方法来优化折痕图案,同时与活性材料的性能和行为相结合。本文所用的MAE材料由嵌入Dow HS II有机硅弹性体化合物中的标称30%v / v的325网格六方铁酸钡颗粒组成。这些颗粒状复合材料在磁场中固化,以产生具有各向异性磁化强度的磁弹性固体,例如。它们具有平行于固化轴的优选磁轴。这些MAE的变形形状和/或受力特征在三种几何形状中进行了检查:整体悬臂以及两段和四段复合手风琴结构。在手风琴结构中,MAE材料的贴片粘结到Gelest OE41未填充的有机硅弹性体基材上。研究了两种模拟方法,一种是使用Maxwell应力张量作为牵引边界条件,另一种是使用最小能量运动学(MEK)模型。两种方法均由于主导MAE行为的磁转矩机制而捕获致动。与实验数据的比较表明,仅在单个可调参数方面(在有限元模型中,MAE材料的有效恒定磁化强度(在小和中度变形下)或在最小能量模型中的有效模量)具有良好一致性。四段有限元模型在大变形时易于数值锁定。所需的有效磁化强度和模量值是实际实验测量值的一部分,这表明从颗粒传递到基体的磁转矩减少了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号