...
首页> 外文期刊>Small >Self-Assembly of Metalloporphyrins into Light-Harvesting Peptide Nanofiber Hydrogels for Solar Water OxidationSelf-Assembly of Metalloporphyrins into Light-Harvesting Peptide Nanofi ber Hydrogels for Solar Water Oxidation
【24h】

Self-Assembly of Metalloporphyrins into Light-Harvesting Peptide Nanofiber Hydrogels for Solar Water OxidationSelf-Assembly of Metalloporphyrins into Light-Harvesting Peptide Nanofi ber Hydrogels for Solar Water Oxidation

机译:金属卟啉自组装成光吸收肽纳米纤维水凝胶用于太阳能氧化自组装金属卟啉自组装成光吸收肽纳米纤维水凝胶用于太阳能氧化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The use of renewable and clean energy is critically needed for the sustainability of our society since fossil fuels cause serious environmental problems~([1,2]) Solar energy is undoubtedly a promising energy resource, but its use is limited by the low irradiance intensity (about 100 mW/cm~2),intermittence, and geographical heterogeneity. Photovoltaic systems have intrinsic limitation in solving these problems because of difficulties in the storage and transportation of electrical energy. In nature, solar energy is converted to chemical energy in green plants, algae, and cyanobacteria via photosynthesis. Enormous efforts have been made to develop an artificial photosynthetic system for the production of clean fuels by utilizing solar energy. ~([3-6]) Water-splitting, however, is a highly challenging reaction because it requires multiple -electron transfer coupled with proton transfer at a minimum potential of 0.81 V versus normal hydrogen electrode (NHE) at pH 7 on average for each electron transfer.~([7]) Photosystems overcome this intrinsic limitation using sophisticated protein scaffolds for the optimization of the spatial arrangement of functional molecules, such as catalytic clusters (i.e., Mn complexes), redox relay molecules (i.e., quinone complexes), and chromophores (i.e., chlorophylls), as illustrated in Figure Sl in the Supporting Information. In particular, a well-defined spatial alignment of chromophores is critically important for efficient excitation energy transfer (EET) to the reaction center, so that photosystems effectively generate a gradient of electrochemical potential for photosynthetic reactions.~([8]) Thus, it is highly desirable to construct artificial light-harvesting complexes for EET. However, the precise assembly of multiple chromophores with redox catalysts is technically very difficult, imposing limitations to EET for light-driven water-splitting.~([9-13])
机译:由于化石燃料会引起严重的环境问题,因此对于我们社会的可持续发展而言,迫切需要使用可再生和清洁能源〜[[1,2])太阳能无疑是一种有前途的能源,但其使用受到低辐照强度的限制(大约100 mW / cm〜2),间歇性和地理异质性。由于电能的存储和运输困难,光伏系统在解决这些问题方面具有固有的局限性。在自然界中,太阳能通过光合作用在绿色植物,藻类和蓝细菌中转化为化学能。为了开发利用太阳能来生产清洁燃料的人造光合作用系统,已经做出了巨大的努力。 〜([3-6])的水分解是一个极富挑战性的反应,因为与平均氢电极(NHE)在pH值平均为7时相比,它需要多次电子转移以及质子转移,最低电势为0.81 V 〜([7])光系统使用复杂的蛋白质支架克服了固有的局限性,以优化功能分子的空间排列,例如催化簇(即Mn配合物),氧化还原中继分子(即醌配合物)和生色团(即叶绿素),如支持信息中的图S1所示。特别是,良好定义的生色团空间排列对于将激发能量有效转移到反应中心至关重要,因此光系统可以有效地产生光合作用的电化学势梯度。[[8])因此,它非常需要构建用于EET的人造光收集复合物。但是,用氧化还原催化剂精确组装多个生色团在技术上是非常困难的,这限制了光驱动水分解的EET。〜[9-13]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号