...
首页> 外文期刊>Soil Biology & Biochemistry >Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species
【24h】

Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species

机译:三种树种在草地绿化后的土壤碳库,植物生物标志物和平均碳停留时间

获取原文
获取原文并翻译 | 示例
           

摘要

Afforestation of grassland has been globally identified as being an important means for creating a sink for atmospheric carbon (C). However, the impact of afforestation on soil C is still poorly understood, due to the paucity of well designed long-term experiments and the lack of investigation into the response of different soil C fractions to afforestation. In addition, little is known about the origins of soil C and soil organic matter (SOM) stability after afforestation. In a retrospective study, we measured C mass in the soil light and heavy fractions in the first 10 years after afforestation of grassland with Eucalyptus nitens, Pinus radiata and Cupressus macrocarpa. The results suggest that C mass in the soil heavy fraction remained stable, but the C mass in the light fraction decreased at year 5 under three species. Soil 未[super]13C analysis showed that the decrease in the light fraction may be due to reduced C inputs from grassland species litter and low inputs from the still young trees. After the initial reduction, the recovery of soil C in the light fraction depended on tree species. At year 10, an increase of 33% in light fraction soil C was observed at the 0-30 cm depth under E. nitens, compared to that under the original grassland (year 0). Planting P. radiata restored light fraction soil C to the original level under grassland, whereas planting C. macrocarpa led to a decrease of 33%. We concluded that the increase of light fraction soil C between year 5 and 10 is most likely due to C input from tree residues. Most of the increased C was derived from root turnover under pine and from both root and leaf turnover under E. nitens, as indicated by plant C biomarkers such as lignin-derived phenols and suberin and cutin-derived compounds in the 0-5 cm soil layer. Modelling of soil -[super]14Cppt suggested that SOM had a greater mean residence time at year 10 than year 0 and 5 due to increased relative abundance of recalcitrant plant biopolymers.
机译:草原的植树造林已被全球公认为是建立大气碳汇的重要手段。但是,由于缺乏精心设计的长期实验,并且缺乏对不同土壤C组分对造林的响应的调查研究,造林对土壤C的影响仍然知之甚少。此外,对造林后土壤碳和土壤有机质(SOM)稳定性的起源知之甚少。在一项回顾性研究中,我们在用桉木,辐射松和柏树造林的前10年中,测量了土壤轻重组分中的碳质量。结果表明,在第5年,三种物种的土壤重组分中的C质量保持稳定,而轻组分中的C质量下降。土壤13 C分析表明,轻度组分的减少可能是由于草地物种凋落物的碳输入减少和仍然幼树的低输入引起的。初始还原后,轻质土壤中C的恢复取决于树木种类。在第10年,与原始草地(第0年)相比,在E. nitens下0-30 cm深度处的轻质土壤C含量增加了33%。种植辐射松将草地上的轻质土壤C恢复到原始水平,而种植大果C.导致其减少了33%。我们得出的结论是,第5年和第10年之间土壤轻度C的增加很可能是由于树木残留物产生的C输入。大部分增加的碳源于松树下的根部周转,以及大肠埃希菌下的根部和叶周转,正如植物C的生物标志物(如木质素衍生的酚和木栓质和角质衍生的化合物)在0-5厘米土壤中所表明的那样层。土壤-14 Cppt的模型表明,由于顽固植物生物聚合物的相对丰度增加,SOM在10年的平均停留时间比0年和5年更长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号