首页> 外文期刊>Spine >Interbody fusion cage design using integrated global layout and local microstructure topology optimization.
【24h】

Interbody fusion cage design using integrated global layout and local microstructure topology optimization.

机译:椎间融合器笼设计使用集成的全局布局和局部微结构拓扑优化。

获取原文
获取原文并翻译 | 示例
       

摘要

STUDY DESIGN: An approach combining global layout and local microstructure topology optimization was used to create a new interbody fusion cage design that concurrently enhanced stability, biofactor delivery, and mechanical tissue stimulation for improved arthrodesis. OBJECTIVE: To develop a new interbody fusion cage design by topology optimization with porous internal architecture. To compare the performance of this new design to conventional threaded cage designs regarding early stability and long-term stress shielding effects on ingrown bone. SUMMARY OF BACKGROUND DATA: Conventional interbody cage designs mainly fall into categories of cylindrical or rectangular shell shapes. The designs contribute to rigid stability and maintain disc height for successful arthrodesis but may also suffer mechanically mediated failures of dislocation or subsidence, as well as the possibility of bone resorption. The new optimization approach created a cage having designed microstructure that achieved desired mechanical performance while providing interconnected channels for biofactor delivery. METHODS: The topology optimization algorithm determines the material layout under desirable volume fraction (50%) and displacement constraints favorable to bone formation. A local microstructural topology optimization method was used to generate periodic microstructures for porous isotropic materials. Final topology was generated by the integration of the two-scaled structures according to segmented regions and the corresponding material density. Image-base finite element analysis was used to compare the mechanical performance of the topology-optimized cage and conventional threaded cage. RESULTS: The final design can be fabricated by a variety of Solid Free-Form systems directly from the image output. The new design exhibited a narrower, more uniform displacement range than the threaded cage design and lower stress at the cage-vertebra interface, suggesting a reduced risk of subsidence. Strain energy density analysis also indicated that a higher portion of total strain energy density was transferred into the new bone region inside the new designed cage, indicating a reduced risk of stress shielding. CONCLUSION: The new design approach using integrated topology optimization demonstrated comparable or better stability by limited displacement and reduced localized deformation related to the risk of subsidence. Less shielding of newly formed bone was predicted inside the new designed cage. Using the present approach, it is also possible to tailor cage design for specific materials, either titanium or polymer, that can attain the desired balance between stability, reduced stress shielding, and porosity for biofactor delivery.
机译:研究设计:一种结合了全局布局和局部微结构拓扑优化的方法被用于创建新的椎间融合器笼设计,该设计同时增强了稳定性,生物因子的输送和机械组织的刺激,从而改善了关节固定术。目的:通过多孔内部结构的拓扑优化,开发一种新的椎间融合器设计。在早期稳定性和对成骨的长期应力屏蔽效果方面,将这种新设计的性能与传统的螺纹笼设计进行比较。背景技术概述:传统的车厢保持架设计主要分为圆柱或矩形壳体形状的类别。这些设计有助于刚性稳定性并保持椎间盘高度以成功进行关节固定,但也可能遭受机械介导的脱位或下陷失败,以及骨吸收的可能性。新的优化方法创建了一种具有设计微结构的笼子,该笼子在提供所需的机械性能的同时,还提供了相互连接的通道来输送生物因子。方法:拓扑优化算法确定材料布局在理想的体积分数(50%)和有利于骨形成的位移约束下。使用局部微结构拓扑优化方法来生成多孔各向同性材料的周期性微结构。根据分段区域和相应的材料密度,通过将两个尺度的结构集成在一起,生成最终的拓扑。基于图像的有限元分析用于比较拓扑优化的保持架和常规螺纹保持架的机械性能。结果:最终设计可以由各种Solid Free-Form系统直接从图像输出中制造出来。与螺纹笼式设计相比,新设计具有更窄,更均匀的位移范围,并且笼-椎骨界面处的应力更低,这表明降低了沉陷风险。应变能密度分析还表明,总应变能密度的较高部分转移到了新设计的笼子内的新骨区域中,表明降低了应力屏蔽的风险。结论:采用集成拓扑优化的新设计方法通过有限的位移和减少的与沉降风险有关的局部变形,证明了可比或更好的稳定性。在新设计的笼子中,预计对新形成的骨头的屏蔽作用会更小。使用本发明的方法,还可以为钛或聚合物的特定材料定制保持架设计,其可以在稳定性,减少的应力屏蔽和用于生物因子递送的孔隙率之间达到所需的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号