...
首页> 外文期刊>Spectroscopy >Chemometrics in Spectroscopy: Calibration Transfer, Part VI: The Mathematics of Photometric Standards Used for Spectroscopy
【24h】

Chemometrics in Spectroscopy: Calibration Transfer, Part VI: The Mathematics of Photometric Standards Used for Spectroscopy

机译:光谱学中的化学计量学:校准传递,第六部分:光谱学中使用的光度标准数学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Photometric accuracy and precision, as reproducibility and repeatability, respectively, are essential for building consistent large databases over time for use in qualitative searches or quantitative multivariate analysis. If the spectrophotometer in use is inconsistent in terms of linearity and photometric accuracy, the analytical precision and accuracy will be jeopardized over time. Photometric accuracy and linearity drift over time within a single instrument or between instruments and create errors and variation in the accuracy of measurements using databases collected with different photometric registrations. How do current commercial instruments vary with respect to photometric accuracy and precision over time? What are potential solutions to this challenge? Photometric precision and accuracy, when measured with a certain protocol, are termed photometric repeatability and reproducibility. The photometric stability within a single instrument and between multiple instruments over time is important for seamless transfer of multivariate calibrations, and for the unbiased application of qualitative search libraries. In a previous installment (1), we discussed the importance of the stability in the wavelength axis of spectrophotometers and compared several leading instruments for differences. Data integrity depends on the accuracy and precision of the X (wavelength) and Y (photometric) axes. There are multiple factors affecting the photometric stability of spectrophotometers: the alignment and mechanical tolerances of optical elements; detector noise characteristics and amplitude; detector linearity; detector electronics, including gain and offset settings; signal amplifier noise; and sample presentation repeatability and reproducibility (2,3).
机译:光度准确度和精密度分别作为可重复性和可重复性,对于随时间建立一致的大型数据库以用于定性搜索或定量多变量分析至关重要。如果所使用的分光光度计在线性和光度精度方面不一致,则分析精度和准确性会随着时间而受到损害。在一台仪器内或仪器之间,光度精度和线性度会随时间漂移,并使用通过不同光度配准收集到的数据库来产生误差和测量精度的变化。当前的商用仪器在光度精度和精度方面如何随时间变化?有什么潜在的解决方案来应对这一挑战?当使用某种协议进行测量时,光度精度和准确性被称为光度可重复性和可再现性。单个仪器内部以及多个仪器之间的光度稳定性随时间的推移对于多变量校准的无缝传输以及定性搜索库的无偏应用很重要。在上一部分(1)中,我们讨论了分光光度计在波长轴上稳定性的重要性,并比较了几种领先仪器之间的差异。数据完整性取决于X(波长)和Y(光度)轴的精度和精确度。影响分光光度计光度稳定性的因素有很多:光学元件的对准和机械公差;探测器的噪声特性和幅度;检测器线性度检测器电子设备,包括增益和偏移设置;信号放大器噪声;以及样品表现的可重复性和可重复性(2,3)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号