首页> 外文期刊>Surveys in Geophysics: An International Review Journal of Geophysics and Planetary Sciences >Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data
【24h】

Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

机译:利用A列卫星数据推断的多云大气,通过1D和3D方法计算太阳辐射通量

获取原文
获取原文并翻译 | 示例
       

摘要

This study used realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE mission, was applied to CloudSat, CALIPSO and MODIS satellite data thus producing 3D cloudy atmospheres measuring 61 km wide by 14,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances were then computed by a Monte Carlo photon transfer model run in both full 3D and 1D independent column approximation modes. Results were averaged into 1,303 (50 km) ~2 domains. For domains with total cloud fractions A _c < 0.7 top-of-atmosphere (TOA) albedos tend to be largest for 3D transfer with differences increasing with solar zenith angle. Differences are largest for A _c > 0. 7 and characterized by small bias yet large random errors. Regardless of A _c, differences between 3D and 1D transfer rarely exceed ±30 W m ~(-2) for net TOA and surface fluxes and ±10 W m ~(-2) for atmospheric absorption. Horizontal fluxes through domain sides depend on A _c with ~20% of cases exceeding ±30 W m ~(-2); the largest values occur for A _c > 0.7. Conversely, heating rate differences rarely exceed ±20%. As a cursory test of TOA radiative closure, fluxes produced by the 3D model were averaged up to (20 km) ~2 and compared to values measured by CERES. While relatively little attention was paid to optical properties of ice crystals and surfaces, and aerosols were neglected entirely, ~30% of the differences between 3D model estimates and measurements fall within ±10 W m ~(-2); this is the target agreement set for EarthCARE. This, coupled with the aforementioned comparison between 3D and 1D transfer, leads to the recommendation that EarthCARE employ a 3D transport model when attempting TOA radiative closure.
机译:这项研究使用多云大气的逼真的表示来评估与一维辐射传递模型相关的太阳通量估算中的误差。为EarthCARE任务开发的一种场景构造算法已应用于CloudSat,CALIPSO和MODIS卫星数据,从而以1 km的网格间距产生了61 km宽乘14,000 km长的3D多云大气。然后,通过以完全3D和1D独立列近似模式运行的Monte Carlo光子传递模型来计算宽带太阳通量和辐射率。结果平均分为1,303(50 km)〜2个域。对于总云量分数A _c <0.7大气顶层(TOA)的区域,反照率在3D传输中趋于最大,且差异随太阳天顶角的增加而增加。对于A _c> 0. 7,差异最大。其特点是偏差小而随机误差大。不管A _c,对于净TOA和表面通量,3D和1D传递之间的差异很少超过±30 W m〜(-2),对于大气吸收,差异很少超过±10 W m〜(-2)。穿过磁畴侧的水平通量取决于A _c,大约20%的情况超过±30 W m〜(-2);最大值出现在A _c> 0.7时。相反,加热速率差异很少超过±20%。作为对TOA辐射封闭的粗略测试,由3D模型产生的通量平均可达(20 km)〜2,并与CERES测量的值进行比较。尽管很少关注冰晶和表面的光学特性,并且完全忽略了气溶胶,但是3D模型估计和测量之间的差异约30%落在±10 W m〜(-2)内;这是为EarthCARE设定的目标协议。结合上述3D和1D传输之间的比较,建议在尝试TOA辐射封闭时EarthCARE采用3D传输模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号