首页> 外文期刊>Surveys in Geophysics: An International Review Journal of Geophysics and Planetary Sciences >Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations
【24h】

Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations

机译:在模型和观测中全球大气水文循环的物理一致响应

获取原文
获取原文并翻译 | 示例
       

摘要

Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the Clausius-Clapeyron equation) and of precipitation at the rate 2-3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at *-0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988-2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at *15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the largescale atmospheric circulation and regional feedbacks.
机译:介绍了全球大气水循环对变暖气候的健壮和从物理上可以理解的响应。通过考虑对地表温度(T)变化的年际响应,观测结果和AMIP5模拟得出的结论是,柱积分水蒸气以7%/ K的速率增加(与Clausius-Clapeyron方程一致),而降水以2的速率增加-3%/ K(符合能量约束)。使用简单和复杂的气候模型,我们证明了温室气体的辐射强迫目前正在以* -0.15%/十年的速度抑制全球降水(P)。连同自然变异性,这可以解释为什么在1988-2008年期间观测到的全球P趋势接近于零。全球水循环中的区域响应受到水分通量变化的强烈限制。模型模拟显示,随着变暖,在900 hPa时进入热带湿润地区的水分通量增加,在600 hPa时出水量增加(较小幅度)。水分传输解释了在气候变暖的CMIP5模拟中,热带潮湿地区的P值增加,而亚热带干旱地区的P值出现微小变化或负向变化。对于AMIP5模拟和卫星观测,最重的5天降雨总强度在海洋上以* 15%/ K的强度增加,而在陆地上所有百分位处的减少量都在减少。 CMIP5模拟中的气候变化响应显示,强度最高的海洋和陆地上的P持续增加,接近克劳修斯-克拉珀龙尺度的7%/ K,而最低百分比的P则下降,这表明陆地上的年际变化可能不会成为气候变化的良好代表。降水的局部变化及其极端情况在很大程度上取决于大规模大气环流的微小变化和区域反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号