...
首页> 外文期刊>Physics in medicine and biology. >Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods
【24h】

Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods

机译:使用加速梯度方法的M / EEG反问题的混合范数估计

获取原文
获取原文并翻译 | 示例
           

摘要

Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell's equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions that have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called minimum norm estimates (MNE), promote source estimates with a small 2 norm. Here, we consider a more general class of priors based on mixed norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as mixed-norm estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level 1/ 2 mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the 1/ 2 norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furthermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data.
机译:磁脑电图(M / EEG)测量由神经电流产生的电磁场。给定头部的导体模型,以及大脑中源电流的分布,麦克斯韦方程可让人们计算出随后的M / EEG信号。有了实际的M / EEG测量结果并解决了这一正向问题,就可以在空间和时间上定位生成记录数据的大脑区域。然而,由于问题的物理性,与可能的源位置的数量相比传感器的数量有限以及测量噪声,这种反问题是不适当的。因此,需要附加的约束。经典逆求解器通常称为最小范数估计(MNE),它以较小的2范数来促进源估计。在这里,我们考虑基于混合规范的更一般的先验类。这样的规范具有构造先验的能力,以便合并有关来源的一些其他假设。我们将这类求解器称为混合范数估计(MxNE)。在M / EEG的背景下,MxNE可以使用两级1/2混合范数来促进具有平稳时间估计的空间焦点源,而三级混合范数可以用于促进不同类别之间的空间不重叠源实验条件。为了有效地解决MxNE的优化问题,我们引入了快速的一阶迭代方案,该方案针对1/2范数在几秒钟内给出了解决方案,从而使简单的MNE既方便又方便。此外,由于优化问题的凸性,我们可以提供保证全局收敛的最优条件。通过仿真和实验MEG数据证明了该方法的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号