...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Complexes of HNO3 and NO3 with NO2 and N2O4, and their potential role in atmospheric HONO formation
【24h】

Complexes of HNO3 and NO3 with NO2 and N2O4, and their potential role in atmospheric HONO formation

机译:HNO3和NO3与NO2和N2O4的配合物及其在大气HONO形成中的潜在作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Calculations were performed to determine the structures, energetics, and spectroscopy of the atmospherically relevant complexes (HNO3)·(NO2), (HNO3)·(N2O4), (NO_3~-)·(NO2), and (NO_3~-). (N2O4). The binding energies indicate that three of the four complexes are quite stable, with the most stable (NO_3~-)·(N2O4) possessing binding energy of almost —14 kcal mol~(-1). Vibrational frequencies were calculated for use in detecting the complexes by infrared and Raman spectroscopy. An ATR-FTIR experiment showed features at 1632 and 1602 cm~(-1) that are attributed to NO2 complexed to NO_3~- and HNO3, respectively. The electronic states of (HNO3)· (N2O4) and (NO_3~-)·(N2O4) were investigated using an excited state method and it was determined that both complexes possess one low-lying excited state that is accessible through absorption of visible radiation. Evidence for the existence of (NO_3~-)·(N2O4) was obtained from UV/vis absorption spectra of N2O4 in concentrated HNO3, which show a band at 320 nm that is blue shifted by 20 nm relative to what is observed for N2O4 dissolved in organic solvents. Finally, hydrogen transfer reactions within the (HNO3)·(NO2) and (HNO3)·(N2O4) complexes leading to the formation of HONO, were investigated. In both systems the calculated potential profiles rule out a thermal mechanism, but indicate the reaction could take place following the absorption of visible radiation. We propose that these complexes are potentially important in the thermal and photochemical production of HONO observed in previous laboratory and field studies.
机译:进行了计算以确定与大气相关的配合物(HNO3)·(NO2),(HNO3)·(N2O4),(NO_3〜-)·(NO2)和(NO_3〜-)的结构,能级和光谱。 (N2O4)。结合能表明四个配合物中的三个非常稳定,最稳定的(NO_3〜-)·(N2O4)的结合能几乎为–14 kcal mol〜(-1)。计算了振动频率,以用于通过红外和拉曼光谱检测复合物。 ATR-FTIR实验显示1632和1602 cm〜(-1)处的特征分别归因于与NO_3〜-和HNO3络合的NO2。使用激发态方法研究了(HNO3)·(N2O4)和(NO_3〜-)·(N2O4)的电子态,并确定这两种配合物都具有一个低能级的激发态,可以通过吸收可见光来达到。从浓HNO3中N2O4的UV / vis吸收光谱获得(NO_3-〜)·(N2O4)的证据,该光谱显示在320 nm处的一条带相对于溶解的N2O4所观察到的蓝移了20 nm。在有机溶剂中。最后,研究了在(HNO3)·(NO2)和(HNO3)·(N2O4)配合物中导致HONO形成的氢转移反应。在这两个系统中,计算出的电势分布都排除了热机制,但表明反应可能在吸收可见辐射之后发生。我们建议这些配合物在以前的实验室和现场研究中观察到的HONO的热和光化学生产中潜在重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号