...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >New mechanistic insight into electronically excited CO-NiO(100):a quantum dynamical analysis
【24h】

New mechanistic insight into electronically excited CO-NiO(100):a quantum dynamical analysis

机译:电子激发CO-NiO(100)的新机理研究:量子动力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

In a recent study Redlich et al.[Redlich et al,Chem.Phys.Lett.2006,420,110]measured the velocity distribution of CO molecules desorbing from a NiO(100)surface after irradiation with an ultraviolet(UV)laser pulse.Due to the complexity of the involved processes no experimental evidence on the excitation and desorption mechanism could be obtained.In recent ab initio studies Mehdaoui et al.[Mehdaoui et al,Phys.Rev.Lett.2007,98,037601]have shown that a 5a->2 PI*(alpha ~3II)like transition within the CO adsorbate is most likely the crucial excitation step in the CO-NiO(100)system.At first sight this seems unlikely,since the interaction of CO molecules with the NiO(100)surface is very weak(-0.30 eV)and the corresponding CO gas phase transition energy is about 1.5 eV higher than the laser pulse energy of 4.66 eV used in the experiment.In this work we give further insight into relevant electronically excited states and identify the desorption mechanism by analysing the dynamical processes after laser excitation by quantum dynamical wave packet simulations on the basis of three-dimensional(3D)ab initio potential energy surfaces.The results corroborate the so far discussed excitation mechanism,which proposes the formation of a genuine C-Ni bond as the driving force for photodesorption,as the crucial excitation step.
机译:在最近的一项研究中,Redlich等人[Redlich等人,Chem.Phys.Lett.2006,420,110]测量了用紫外线(UV)激光脉冲照射后从NiO(100)表面脱附的CO分子的速度分布。由于涉及的过程的复杂性,无法获得有关激发和解吸机理的实验证据。在最近的从头开始的研究中,Mehdaoui等人[Mehdaoui等人,Phys.Rev.Lett.2007,98,037601]显示, CO吸附物中5a-> 2 PI *(α〜3II)的跃迁很可能是CO-NiO(100)系统中至关重要的激发步骤。乍一看,这似乎不太可能,因为CO分子与NiO的相互作用(100)表面非常弱(-0.30 eV),相应的CO气相转变能比实验中使用的4.66 eV的激光脉冲能高1.5 eV。在这项工作中,我们进一步了解了相关的电子激发态并通过分析动力学过程确定脱附机理基于三维(3D)ab初始势能面的量子动力学波包模拟进行激光激发。结果证实了迄今讨论的激发机理,该机理提出了形成真正的C-Ni键作为分子的驱动力。光解吸,这是至关重要的激发步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号