...
【24h】

A new method for molecular dynamics simulation of nanometric cutting

机译:纳米切削分子动力学模拟的新方法

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics (MD) simulation of nanometric cutting (ultraprecision machining involving cutting depths of the order of a few angstroms) involves considerable computational time (a few days to several weeks) and significant memory usage even for a few thousand workpiece atoms using workstations with fast processors (e.g. Digital Alpha workstation with 333 MHz clock speed). Consequently, it becomes necessary to use one of the following alternatives: extremely high cutting speeds, (about 500 m s(-1)), simulations using a smaller number of atoms, two-dimensional modelling, or acceptance of long computational times (several weeks) to address such problems. In order to reduce the computational time and at the same time to reduce the memory requirements significantly, a new method called length-restricted molecular dynamics (LRMD) simulation is proposed. In this method, the length of the work material is maintained constant but its position shifts along the direction of cut, that is atoms from the machined part of the work material that do not significantly affect the results of simulation, are discarded (or saved separately, if need be) and instead their positions are exchanged to accommodate new atoms in the work material ahead of the tool, thus maintaining a constant length. By this technique, a reduction in both the computational time and the memory (over two to three times) is possible depending on the number of atoms considered in the work material without affecting the final outcome. The larger the number of atoms considered, the greater is the reduction in both computational time and memory requirements. It should be noted that, while the LRMD method is illustrated here for nanometric cutting, it can equally be applied for other MD simulations involving a large number of atoms. [References: 44]
机译:纳米切削(涉及切削深度为几埃的超精密加工)的分子动力学(MD)模拟涉及相当多的计算时间(几天到几周),并且即使使用快速工作站对数千个工件原子也要占用大量内存。处理器(例如时钟频率为333 MHz的Digital Alpha工作站)。因此,有必要使用以下替代方法之一:极高的切割速度(约500 ms(-1)),使用较少数量的原子进行模拟,二维建模或接受较长的计算时间(数周) )以解决此类问题。为了减少计算时间,同时显着减少内存需求,提出了一种新的方法,称为长度限制分子动力学(LRMD)仿真。在这种方法中,工作材料的长度保持不变,但其位置沿切割方向移动,即不会严重影响模拟结果的来自工作材料机加工部分的原子被丢弃(或单独保存) (如果需要的话),而是交换它们的位置以在工具之前的工作材料中容纳新的原子,从而保持恒定的长度。通过这种技术,可以在不影响最终结果的情况下,根据工作材料中考虑的原子数,减少计算时间和内存(超过两到三倍)。考虑的原子数越多,计算时间和内存需求的减少就越大。应该注意的是,虽然这里为纳米切割示出了LRMD方法,但是它同样可以应用于涉及大量原子的其他MD模拟。 [参考:44]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号