首页> 外文期刊>Philosophical magazine, B. Physics of condensed matter, electronic, optical, and magnetic properties >Thermodynamic effects on phase transformation in heterogeneous solids, and pressure-amorphization of emulsified ice
【24h】

Thermodynamic effects on phase transformation in heterogeneous solids, and pressure-amorphization of emulsified ice

机译:热力学对非均相固体相变和乳化冰压力非晶化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We consider that when a solid, confined to a cavity in the bulk of a rigid matrix, transforms with a decrease in volume, the interface sustains a tensile strain and its structure changes, thus adding to the thermodynamic effects. In a case where the interface contains a monolayer of long-chain molecules, whose one end binds with the confined solid and the other with the matrix, the chains stretch radially to sustain the tensile strain and the effects become substantial, and quite different from other heterogeneous solids. In these cases, the volume contraction and the compressibility of the material would be less than expected, the transformation range would be broadened and the configurational entropy would be lowered as the number of thermally accessible configurations decreases on stretching. A confirmation of these effects is found in an analysis of the available results on pressure-amorphization of ice Ih spheres dispersed in a hydrocarbon emulsion, and by new experiments. Pressure-melting of ice in the emulsion shows that the compressibility of water at 215K is only about 30% more than that of ice, which indicates that the emulsifier molecules interact with the water molecules on the surface of ice Ih spheres and contribute to the volume change. [References: 18]
机译:我们认为,当限制在大量刚性基质中的空腔内的固体随着体积的减小而转变时,界面会承受拉伸应变,其结构也会发生变化,从而增加了热力学效果。如果界面包含长链分子的单分子层,其一端与受限固体结合,另一端与基质结合,则这些链会径向拉伸以承受拉伸应变,其作用会变得显着,并且与另一端完全不同异质固体。在这些情况下,材料的体积收缩和可压缩性将比预期的要小,随着拉伸时热可及构型的数量减少,相变范围将变大,构型熵将降低。在对分散在烃乳液中的冰Ih球进行压力非晶化的现有结果的分析中,以及通过新的实验,可以找到这些作用的证实。乳液中冰的压力熔融显示,在215K时,水的可压缩性仅比冰高30%,这表明乳化剂分子与冰Ih球表面上的水分子相互作用,并贡献了体积更改。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号