首页> 美国政府科技报告 >17-DMAG Diminishes Hemorrhage-Induced Small Intestine Injury by Elevating Bcl-2 Protein and Inhibiting iNOS Pathway, TNF-alpha Increase, and Caspase-3 Activation
【24h】

17-DMAG Diminishes Hemorrhage-Induced Small Intestine Injury by Elevating Bcl-2 Protein and Inhibiting iNOS Pathway, TNF-alpha Increase, and Caspase-3 Activation

机译:17-DmaG通过升高Bcl-2蛋白和抑制iNOs通路,TNF-α增加和Caspase-3活化来减少出血诱导的小肠损伤

获取原文

摘要

Hemorrhage increases inducible nitric oxide synthase (iNOS) and depletes ATP levels in various tissues. Previous studies have shown that geldanamycin, an inducer of heat shock protein 70kDa (HSP-70) and inhibitor of iNOS, limits both processes. Reduction in NO production limits lipid peroxidation, apoptosome formation, and caspase-3 activation, thereby increasing cellular survival and reducing the sequelae of hemorrhage. The poor solubility of geldanamycin in aqueous solutions, however, limits its effectiveness as a drug. 17-DMAG is a water-soluble analog of geldanamycin that might have greater therapeutic utility. This study investigated the effectiveness of 17-DMAG at reducing hemorrhagic injury in mouse small intestine. Results In mice, the hemorrhage-induced iNOS increase correlated with increases in Kruppel-like factor 6 (KLF6) and NF-kB and a decrease in KLF4. As a result, increases in NO production and lipid peroxidation occurred. Moreover, hemorrhage also resulted in decreased Bcl-2 and increased TNF-a, IL-6, and IL-10 concentrations, p53 protein, caspase-3 activation, and cellular ATP depletion. A shortening and widening of villi in the small intestine was also observed. Treatment with 17-DMAG significantly reduced the hemorrhage-induced increases in iNOS protein, jejunal alteration, and TNF-a and IL-10 concentrations, but 17-DMAG did not affect the hemorrhageinduced increases in p53 and IL-6 concentration. 17-DMAG treatment by itself upregulated HSP-70, Bcl- 2, and p53. Conclusion Since 17-DMAG is water soluble, bioactive, and not toxic, 17-DMAG may prove useful as a prophylactic drug for hemorrhage.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号