首页> 美国政府科技报告 >Experimental and theoretical/numerical study of evaporation from shallow pools of organic liquids, at simulated work place conditions
【24h】

Experimental and theoretical/numerical study of evaporation from shallow pools of organic liquids, at simulated work place conditions

机译:在模拟工作场所条件下,从浅层有机液体蒸发的实验和理论/数值研究

获取原文

摘要

The rate of evaporation from shallow pools of organic liquids was measured together with the global pollutant concentration distribution in a test chamber simulating work place conditions at room temperature. factorial data cover three liquids with different volatility, three pool geometries, and three room convective velocities in the range usually met in occupational hygiene. The data are compared to 6 semi-empirical correlations for mass tranfer employed in occupational hygiene and to 5 analytical correlations for boundary layer theory derived by the Reynolds analogy to heat transfer. The semi-empirical correlations generally showed a fair agreement for all experimental data, but tended to underestimate the evaporation especially at the lowest air velocity. All analytical correlations strongly underestimated all experimental data. A new simple correlation predicting evaporation rate based on the data was suggested. Three-dimensional CFD-predictions for laminar flow are in fair agreement with the data on the evaporation rates for the experiment that covers three organic compounds, all pool geometries and the two lowest levels of the air velocity. The global pollutant concentration distribution in case of convective air flow cannot be predicted by the model developed by Roach. If knowledge of the evaporation rate and pollutant concentration at some distance from the source were available, the predicted global pollutant concentration distribution by the model suggested by Scheff. offered a fair agreement with observed data. The box model suggested by Sinden generally offered a fair performance but tended to underestimate the pollutant concentration in region close to the source. Preliminary three-dimensional CFD-predictions of the pollutant concentration distribution in the test chamber covering the data with the lowest air velocity were in fair agreement with the average pollutant concentration but overestimated the average velocity. (au) 29 refs.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号