首页> 美国政府科技报告 >Fabrication of large area gratings with sub-micron pitch using mold micromachining
【24h】

Fabrication of large area gratings with sub-micron pitch using mold micromachining

机译:使用模具微机械加工制造亚微米间距的大面积光栅

获取原文

摘要

In this work, the authors have applied mold micromachining and standard photolithographic techniques to the fabrication of parts integrated with 0.4 micron pitch diffraction gratings. In principle, the approach should be scaleable to considerably finer pitches. They have achieved this by relying on the thickness of deposited or grown films, instead of photolithography, to determine the grating pitch. The gratings can be made to extend over large areas and the entire process is compatible with batch processing. Literally thousands of parts can be batch fabricated from a single lot of six inch wafers. In the first stage of the process they fabricate a planarized silicon dioxide pad over which the silicon nitride wave guide runs. The grating is formed by first patterning and etching single crystalline silicon to form a series of trenches with well defined pitch. The silicon bounding the trenches is then thinned by thermal oxidation followed by stripping of the silicon dioxide. The trenches are filled by a combination of polysilicon depositions and thermal oxidations. Chemical mechanical polishing (CMP) is used to polish back these structures resulting in a series of alternating 2000 (angstrom) wide lines of silicon and silicon dioxide. The thickness of the lines is determined by the oxidation time and the polysilicon deposition thickness. The silicon lines are selectively recessed by anisotropic reactive ion etching, thus forming the mold for the grating. The mold is filled with low stress silicon nitride deposited by chemical vapor deposition. A wave guide is then patterned into the silicon nitride and the mold is locally removed by a combination of deep silicon trench etching and wet KOH etching. This results in a suspended diffraction grating/membrane over the KOH generated pit.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号