首页> 美国政府科技报告 >Link State Relationships Under Incident Conditions: Using a CTM-Based Linear Programming Dynamic Traffic Assignment Model
【24h】

Link State Relationships Under Incident Conditions: Using a CTM-Based Linear Programming Dynamic Traffic Assignment Model

机译:事件条件下的链路状态关系:使用基于CTm的线性规划动态交通分配模型

获取原文

摘要

Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel time variability. In order to combat the negative effects due to congestion, various mitigation strategies have been proposed and implemented in the United States and worldwide. The effectiveness of these congestion mitigations for incident conditions largely depends on the accuracy of information regarding conditions. Therefore, an efficient and accurate procedure to determine the link states, reflected by flows and density over time, is essential to incident management. This research project constructs a user equilibrium Dynamic Traffic Assignment (DTA) model using linear programming (LP) that incorporates the Cell Transmission Model (CTM) to evaluate the temporal variation of flow and density over links, which accurately reflect the link states of a transportation network. The proposed model adopts a scheme of bi-level optimization in which the upper level program determines the flows over the network while the lower level program (CTM) propagates flows according to widely-accepted traffic flow theory. Encapsulation of the CTM equips the model with the capability of accepting inputs of incidents like duration and capacity reduction. Moreover, the proposed bi-level model is capable of handling multiple- origin-destination (OD) pairs, which is a strength that most LP-based DTA models do not possess. By using this model, the temporal variation of flows over links can be readily evaluated and thus it can be used to predict the time-dependent link states. The results of numerical examples show that the flow pattern preserves the user equilibrium principle and satisfies the First-In-First-Out (FIFO) condition. The link-based encapsulation of CTM is able to temporally capture the queue between links and fully mimics the spillback within links.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号